
dr Przemysław Szufel

Zakład Wspomagania i Analizy Decyzji

SGH

https://szufel.pl/python/

Analiza danych i symulacje w języku Python

dr Przemysław Szufel

https://szufel.pl/

Cloud computing

High Performance Computing

Symulacje

Analiza danych

Badania operacyjne (optymalizacja)

 Języki programowania, które używam na co
dzień: Python, Java, R, SQL

2

Informacje wstępne,
czyli co warto wiedzieć przed rozpoczęciem zajęć...

3

Zakres zajęć

Programowanie w języku Python

 środowisko programisty

 składania oraz podstawowe polecenia języka

 analiza i wizualizacja zbiorów danych

Analiza i wizualizacja danych

Teoria symulacji

Analiza danych z modeli symulacyjnych

Symulacje systemów sieciowych

Prowadzenie obliczeń symulacyjnych i

przetwarzanie danych w chmurze Amazon AWS w

języku Python
4

Oprogramowanie

Python Anaconda –wersja Python 2.7 oraz

Python 3.6 – do pobrania ze strony

(http://continuum.io/downloads) zawiera komplet

narzędzi oraz zintegrowane środowisko

programistyczne Spyder

Pakiety języka Python (zawarte już w Anaconda)

 NetworkX

 Numpy

 Matplotlib

5

http://continuum.io/downloads

Pojęcia ze statystyki, które warto sobie

przypomnieć

 podstawowe pojęcia statystyczne (średnia, wariancja,
odchylenie standardowe, dominanta)

 podstawowe rozkłady teoretyczne zmiennych
losowych (rozkład normalny, log-normalny,
jednostajny), różnice pomiędzy rozkładem ciągłym a
dyskretnym, histogram

 podstawy testów statystycznych (pojęcie hipotezy
zerowej zerowej i alternatywnej), przedział ufności dla
średniej

 (opcjonalnie) podstawy regresji liniowej oraz
narzędzia data mining (np. drzewa decyzyjne)

Jóźwiak J., J. Podgórski (2012) Statystyka od podstaw, PWE, Warszawa,
Rozdziały 2, 3.1, 3.2, 3.3, 4.1, 4.2, 6.5, 6.6, 10.1 ,11.1 ,11.2

6

Podstawy informatyczne, które warto

znać (ale nie są konieczne)

podstawy programowania w dowolnym języku

(pętle, instrukcje warunkowa, funkcja/procedura,

wyjątek, opcjonalnie – rozumienie podejścia

obiektowego)

http://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial

 (opcjonalnie) podstawy języka SQL

 (opcjonalnie) umiejętność posługiwania się

konsolą – opcjonalnie – znajomość Linuxa i

podstawowych poleceń powłoki bash
http://wazniak.mimuw.edu.pl/index.php?title=%C5%9Arodowisko_programisty/Wprowadzenie_do_Basha

7

Przed zajęciami warto przejrzeć ...
... wprowadzenie do języka Python

 Dla początkujących
http://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial

 Dla osób potrafiących programować w innych
językach
https://docs.python.org/2/tutorial/

https://docs.python.org/3/tutorial/

8

Agenda i zasady zaliczeń

9

Agenda

1. Sprawy organizacyjno-zaliczeniowe

2. Programowanie w języku Python
1. środowisko programisty

2. składania języka podstawowe polecenia języka

3. analiza i wizualizacja zbiorów danych

3. Teoria symulacji

4. Analiza danych z modeli symulacyjnych

5. Symulacje systemów sieciowych

6. Wprowadzenie do symulacji wieloagentowych

7. Prowadzenie obliczeń symulacyjnych i
przetwarzanie danych w chmurze Amazon AWS
w języku Python

10

Zasady zaliczeń

Projekt grupowy (2-3 osób)

Stworzyć model symulacyjny/machine
learningowy w języku Python rozwiązujący
problem biznesowy/analityczny
 dopuszczalne jest opracowanie rozszerzenia

jednego z modeli opracowanych w trakcie z zajęć

Forma przekazania projektu
 Kod źródłowy modelu

 Raport z wynikami symulacji pszufe@gmail.com

 Termin 8 stycznia 2018

11

mailto:pszufe@gmail.com

Język Python - wprowadzenie

12

Język Python

„Python is an easy to learn, powerful programming

language. It has efficient high-level data structures

and a simple but effective approach to object-

oriented programming. Python’s elegant syntax and

dynamic typing, together with its interpreted nature,

make it an ideal language for scripting and rapid

application development in many areas on most

platforms.”

Python tutorial

print "Hello world"

13

Python - cechy

 Łatwy

 Dynamiczne typowanie - brak deklaracji zmiennych

 Zaawansowane struktury danych dostępne wprost ze
składni języka

 Wolne wykonywanie kodu (…ale PyPy, …ale Cython,
numba...)

 Zastosowania

 Szybkie tworzenie prototypowych aplikacji

 Łączenie kodu różnych aplikacji

14

Wydajność kodu w języku Python

(kod w języku C = 1.0)

15

…ale PyPy, …ale Cython, ale numba

Źródło: http://julialang.org/

Python cechy
Brak

deklaracji

zmiennych

Multiple

dispatch

Obiektowy Funkcyjny

Python + +/- + +

R + + +/- +

Matlab/

Octave

+ - + -

Java/C# - - + - / Java8

C/C++ - - + -

16

Oprogramowanie - instalacja

 Python Anaconda –wersja Python 2.7 oraz Python 3.6
– do pobrania ze strony
(http://continuum.io/downloads) zawiera komplet
narzędzi oraz zintegrowane środowisko
programistyczne Spyder

 Pakiety języka Python (zawarte już w Anaconda)
 NetworkX
 Numpy
 Matplotlib

Uwaga! po instalacji Anacondę warto zaktualizować poleceniami
(uruchamianymi z konsoli):
conda update conda
conda update anaconda

Jak zainstalować Anacondę i Spydera – tutorial video

https://www.youtube.com/watch?v=A6_gh0vrZ-E
17

http://continuum.io/downloads

Python wersje

Dialekty języka
2.7.x
print "Hello world", 123

3/4 = 0

raise IOError, "file error"

3.x
print ("Hello world", 123)

3/4 = 0.75

raise IOError("file error")

18

Środowisko Spyder IDE

19

1. Kod źródłowy

2. Inspektor, pomoc

3. Konsola

Spyder IDE - przydatne skróty

1. Działają skróty znane z innych edytorów

tekstowych na platformie Windows (Ctrl+C,

Ctrl+V, Ctrl X, Ctrl+S, Ctrl+O)

2. TAB na zaznaczonym tekście powoduje

zwiększenie poziomu wcięcia

3. Ctrl + przycisk myszy - przenosi do definicji

wybranego elementu

4. Ctrl + I - pokazuje pomoc dla wybranego

elementu

20

Konsola języka Python

21

 ... umożliwia interaktywną pracę w trybie "kalkulatora"

Konsola IPython

(interactive Python)

22

Jupyter – a web browser based IDE

c:\Anaconda2\Scripts\jupyter notebook

c:\Anaconda3\Scripts\jupyter notebook

23

Komórki kodu źródłowego w edytorze

<codecell> użyj Ctrl+Enter aby wykonać]

24

Opcje pracy z Pythonem w chmurze

Terminal (vim, emacs, nano, itf…)

 Jupyter notebook

 wsparcie dla składni

 pamiętaj o trybie headless

Cloud9

 wsparcie dla składni

 collaborative code editing

 działa w sieciach, w których zablokowano

SSH

Typy danych w Pythonie

 Liczby całkowite i zmiennoprzecinkowe
 int, float

 Łańcuchy znaków (tekst)
 str

 Listy – kolekcje elementów dowolnego typy
 list

 Krotki – zbiór uporządkowanych elementów, immutable
 tuple

 Słowniki – tablice typu klucz-wartość
 dict

 Funkcje, funkcje anonimowe (lambda)
 function

 Typy elementów tablic numpy.array
 numpy.float64, numpy.int32 (dostępne też rozmiary na

mniejszej liczbie bitów np. numpy.float32)

26

Przetwarzanie liczb

Python może być używany w trybie kalkulatora

Zwróć uwagę na różną obsługę dzielenia w

Python 2 oraz Python 3

Aby wymusić przetwarzanie jako liczby

zmiennoprzecinkowe wystarczy dodać kropkę,

np.

 100/12. #12. jest typu float

27

Przetwarzanie tekstu

 Tekstem jest dowolne wyrażenie w cudzysłowie
pojedynczym lub podwójnym

a = "Text" albo b='text'

 Znak "\" ma znaczenie specjalne (tzw. escape
character)
 \t = tabulacja
 \n = nowa linia w środowiskach Linux/Unix
 \r\n = nowa linia w środowiska Windows
 \\ = znak \ np.: "C:\\Windows"

 Na tekstach można dokonywać m.in. operacje
 dodawania (łączenia) a+b

 mnożenia (zwielakratniania) a*4
 wyboru podtekstu a[0:5]

28

Listy

 Listy grupują wartości dowolnego typu (tekst, liczby
całkowite, liczby rzeczywiste, listy,)

lista1 = [1, 2, 3, 4]

lista2 = ['a', 'b', 'c']

lista3 = [1, 2, 'a', 'b', 'c', lista1]

 Na tekstach można dokonywać m.in. operacje
 dodawania (łączenia) [1,2,3]+[4,5]

 mnożenia (zwielokrotniania) [1,2]*3
 wyboru podlisty lista3[2:4]

 Ostatni element listy lista[-1]

29

Krotki

Działają tak jak listy

Ale są immutable (niezmienne)

 lista = [1,2,3,4]

 lista[2] = ["ala", "pies"]

[1,2, ["ala", "pies"], 4]

 krotka = (1,2,3,4)

 krotka[3] = 8  zwróci błąd

30

Słowniki

Słowniki grupują wartości typu klucz-wartość

 slownik1 = { 1:30, 2:12, 3:44, 101:666 }

 slownik1 = { 1:"dom", 2:12, 3:44, "d1":"val" }

Do istniejącego słownika można dodawać nowe

wartości oraz aktualizować istniejące

 slownik[klucz] = wartość

Usuwanie elementów ze słownika

 del slownik[klucz]

31

Pierwszy program...

32

Wyrażenie warunkowe if

 Instrukcja if pozwala sterować wykonywaniem programu...

x = int(raw_input("Podaj liczbe "))

if x > 5:

print "liczba jest wieksza od 5"

else:

print "liczba nie jest wieksza od 5"

Proszę zwrócić uwagę na wcięcia, które definiują strukturę kodu!

Do wyboru mamy tabulator lub 4 znaki spasji ...

Pętla

for zmienna in lista

 Instrukcja for umożliwia wielokrotne powtarzanie

czynności

lista1 = ['chf', '$', 'euro']

for element in lista1:

print element

34

Proszę zwrócić uwagę na wcięcia,

które definiują strukturę kodu!

Do wyboru mamy tabulator lub 4 znaki spasji ...

Wyrażenia listowe / generatory

 [x**2 for x in range(10)]

Z filtrowaniem

 [x**2 for x in range(10) if x % 2 == 0]

To samo działa dla słowników

 { x : x**2 for x in range(10) }

Z filtrowaniem

 { x:x**2 for x in range(10) if x % 2 == 0 }

35

Generatory - yield

Elementy listy mogą być generowane wtedy gdy

są potrzebne...

def list1(count):

i = 0

while i < count:

i = i+1

yield i

36

Funkcje

def silnia (n):

if n == 0:

return 1

else:

return n*silnia(n-1)

37 wcięcia pierwsszego i drugiego poziomu

Funkcje 'anonimowe' (lambda)

def f1 (x):

return x*x-x-2

print f1(5)

f2 = f1 #przypisanie funkcji do zmiennej

print f2(5)

f3 = lambda x: x*x-x-2

#przypisanie anonimowej funkcji do zmiennej

print f3(5)

38

Przykład - liczenie pochodnych

def pochodna(f):

h = 0.000000001

f1 = lambda x : (f(x+h)-f(x))/h

return f1

def funk1 (x):

return x*x+3

funk2 = lambda x : 2*x*x+x-1

print pochodna(funk1)(5)

print pochodna(funk2)(3)

39

Przykład c.d.

miejsce zerowe funkcji kwadratowej

f(x) = ax2 + bx + c

def q_solve (f):

#axx + bx + c

c = f(0)

f1 = pochodna(f)

b = f1(0)

a = f(1)-b-c

d_sqrt = sc.sqrt(b*b-4*a*c)

return ((-b-d_sqrt)/(2*a),(-b+d_sqrt)/(2*a))

funk = 4*x*x - 2*x*x + 2

print q_solve(funk)

print q_solve(lambda x : x*x+2*x+10)40

Python - moduły

41

matem.py

def silnia (n):

if n == 0:

return 1

else:

return n*silnia(n-1)

program.py

import matem

s = matem.silnia(5)

print s

import matem as m

print m.silnia(5)

Python - moduły c.d.

42

program.py

from matem import silnia

s = silnia(5)

print s

from matem import *

print silnia(5)

Python - moduły, kolejność

wyszukiwania

1. Katalog

zawierający skrypt

(lub katalog

aktualny)

2. Zmienna

środowiskowa

PYTHONPATH

3. Katalog

instalacyjny

Pythona

43

Rynek EC2 spot

Rynek aukcyjny

Ceny niższe o około 80-90% od cen on-demand

Bardzo duża zmienność (czasami c.spot >

c.on_demand)

 Jeżeli cena spot przekroczy bid to instancja jest

bezwarunkowo zabijana

 "Darmowy lunch" - jeżeli Amazon zabije instancję

to nie płaci się za nieukończone godziny

Od 2015-01-06 2-minute termination notice

ceny spot: c3.8xlarge us-east-1a ostatni tydzień maja

2014

Przykład - bid 0.14$

Legenda

— cena spot

— bid

— cena do zapłaty

— średnia cena za

godzinę

— warmup time

cena USD

Efektywny czas a koszt na rynku

spot

Koszt USD za 24h za 1 ECU [cena on-demand: 0.37]L
ic

z
b

a
 d

n
i
d

o
s
tę

p
n

o
ś
c
i
s
e

rw
e
ra

 w
 c

ią
g

u
 2

 m
ie

s
ię

c
y

Przykład - pobranie cen spot na moc

obliczeniową w chmurze Amazona

import boto.ec2

conn = boto.ec2.connect_to_region("us-east-1",\

aws_access_key_id='AKIAJGBLCUFPEHFLTPGQ',\

aws_secret_access_key=\

'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')

history = conn.get_spot_price_history(\

instance_type="x1.32xlarge",\

product_description="Linux/UNIX",\

availability_zone="us-east-1a")

for h in history:

print h.timestamp,h.availability_zone,\

h.instance_type,h.price

47

Pozyskiwanie danych

- Pliki tekstowe

- CSV

- JSON

- Excel

- Internet

- Relacyjne bazy danych

48

Pliki tekstowe

with open('nazwa_pliku', 'r') as f:

read_data = f.read()

with open('nazwa_pliku', 'r') as f:

for linia in f:

print f

49

Zapisywanie danych o cenach spot do

pliku CSV

import csv

ofile = open('ceny_spot.txt', "wb")

ofilewriter = csv.writer(ofile, delimiter='\t')

ofilewriter.writerow(['time','zone','type','price'])

for h in history:

ofilewriter.writerow([\

h.timestamp, h.availability_zone,\

h.instance_type,h.price])

ofile.close()

50

Odczyt danych z plików CSV

import csv

csvfile = open('ceny_spot.txt', "r")

reader = csv.reader(csvfile, delimiter='\t')

for row in reader:

print row

csvfile.close()

51

Odczyt danych z internetu

from pandas import read_csv

import urllib2 as ul #import urllib.request as ul

url = 'http://szufel.pl/pliki/iris_data.csv'

response = ul.urlopen(url)

data = read_csv(response)

response.close()

52

Praca z danymi JSON

import json

import urllib2 as ul #import urllib.request as ul

json_data = ""

url = 'http://szufel.pl/pliki/plik.txt'

response = ul.urlopen(url)

for linia in response:

json_data += linia

python3: json_data = response.read().decode("utf-8")

slownik = json.loads(json_data)

with open('c:\\temp\\data.txt', 'w') as outfile:

json.dump(slownik, outfile)53

Excel zapis

from openpyxl import Workbook

wb = Workbook()

ws = wb.active

ws['A1'] = 42

import datetime

ws['A2'] = datetime.datetime.now()

wb.save("sample.xlsx")

54

Praca z plikami Excela

import openpyxl

wb = \
openpyxl.load_workbook\

('c:\\temp\\example.xlsx')

sheet_names = wb.get_sheet_names()

sheet = wb.get_sheet_by_name(sheet_names[0]))

print (sheet.title, type(sheet))

print (sheet.max_row, sheet.max_column)

print (len(sheet.rows))

cell1 = sheet['A1']

cell2 = sheet.cell(row=1, column=2)

print (cell1.value, cell2.value)

55

Praca z bazą danych Oracle
wymaga: conda install cx_oracle

import cx_Oracle

con =

cx_Oracle.connect('python/python@192.168.1.195:1521/DWH')

#haslo: ora12345 user: ora

print con.version

cur = con.cursor()

cur.execute('insert into tabela1 (id, kolumna1) \

values (:1, :2)',(5,"tekst"))

cur.execute('select * from tabela1 order by id')

for result in cur:

print result

con.close()

56 http://www.oracle.com/technetwork/articles/dsl/python-091105.html

Kontener Amazon AWS S3

 Podobny do DropBox

 Key-value storage

 Dowolny typ przechowywanych danych

 Dane nigdy bez wiedzy użytkownika nie opuszczą
deklarowanego regionu (np. Frankfurt)

 Przynajmniej trzykrotna replikacja danych

 99.999999999% durability

 99.99%

Dlaczego warto znać?

- BigData storage (zamiast HDFS)

- Public datasets https://aws.amazon.com/datasets/

S3 Python - przykład

from boto.s3.connection import S3Connection

conn = S3Connection(LOGIN',\

'HASLO')

from boto.s3.key import Key

bucket = conn.get_bucket('szufeldemo')

k = Key(bucket)

k.key = 'somepath/0001.txt'

k.set_contents_from_string(\

'12345\r\nline 2\r\nline 3')

DynamoDB – Highly distributed NoSQL

database

Source: aws.amazon.com

Dlaczego warto znać

- IoT oraz dane transakcyjne

DynamoDB z językiem Python

60

from boto.dynamodb2.table import Table

from boto.dynamodb2.layer1 import DynamoDBConnection

from boto.regioninfo import RegionInfo

from datetime import datetime

dynamodb = DynamoDBConnection(\

region=RegionInfo(name="us-east-1",endpoint='dynamodb.us-east-

1.amazonaws.com'),\

aws_access_key_id= "LOGIN",\

aws_secret_access_key="HASLO")

table = Table("demotable",connection=dynamodb)

table.put_item(data={"id":11,\

"name":"John","familyname":"Smith",\

"date":datetime.now().strftime('%Y-%m-%d %H:%M:%S')})

item = table.get_item(id=11)

print item["name"]

Odczyt i zapis danych do R
[feather – korzysta z Apache arrow dla wymiany

danych]

 R

library(feather)

write_feather(iris, "C:/temp/iris.dat")

iris_copy <- read_feather("C:/temp/iris.dat")

 Python
 conda install feather-format -c conda-forge

Wydaj polecenie: conda install feather-format -c conda-forge

[w systemowym wierszu poleceń]

import feather

iris = feather.read_dataframe("C:/temp/iris.dat")

feather.write_dataframe(iris, "C:/temp/iris_copy.dat")

61

Scraping WWW

Automatyzacja zbierania danych z internetu

62

Po co?

Web data extraction

Analityka Big Data

Dane do modeli symulacyjnych

Emulowanie oprogramowania

Jak?
Odwiedzanie szeregu stron WWW w

uporządkowany sposób
 Bezpośrednio przez protokół HTTP (scrapy)

 Poprzez automatyzację przeglądarki (selenium)

63

Web scraping ze scrapy

Command line:

 c:\Anaconda2\Scripts\pip.exe install scrapy

 c:\Anaconda2\Scripts\scrapy.exe shell

https://ezakupy.tesco.pl/groceries/pl-

PL/shop/warzywa-owoce/all?page=1

64

Web scraping ze scrapy (Python 3)

Uwaga na platformie Windows w Pythonie 3

przed instalacją scrapy trzeba pobrać i

zainstalować „Visual C++ 2015 Build Tools”

http://landinghub.visualstudio.com/visual-cpp-

build-tools

 c:\Anaconda3\Scripts\pip.exe install scrapy

65

http://landinghub.visualstudio.com/visual-cpp-build-tools

Firefox: Tools -> Web Developer ->

Inspector

66

Python (lub wewnątrz konsoli scrapy)

 response.body

 elem = response.xpath("//div[contains(@class, 'tile-

content')]")[1]

 elem.xpath("*//a[contains(@class,'product-tile--

title')]/text()").extract()

 elem.xpath("*//span[contains(@class,'value')]/text()

").extract()

67

Scrapy – w jupyter notebook

import requests

from scrapy.http import TextResponse

r =

requests.get('https://ezakupy.tesco.pl/groceries/pl-

PL/shop/warzywa-owoce/all?page=1')

response = TextResponse(r.url, body=r.text,

encoding='utf-8')

68

Scrapy w notebook
import scrapy

import scrapy.http

class TescoItem(scrapy.Item):

#link = scrapy.Field()

text = scrapy.Field()

price = scrapy.Field()

class TescoSpider(scrapy.Spider):

name = "tesco"

allowed_domains = ["ezakupy.tesco.pl"]

start_urls =\

["https://ezakupy.tesco.pl/groceries/pl-PL/shop/warzywa-owoce/all?page="+str(x) for x in range(1,55)]

data = []

def parse(self, response):

print ("Site visited:"+response.url)

for elem in response.xpath("//div[contains(@class, 'product-details--wrapper')]"):

textelem = elem.xpath("div/a[contains(@class,'product-tile--title')]/text()").extract()

priceelem = elem.xpath("div/div[contains(@class,'price-per-sellable-unit--price')]"+\

"/div/span/span[contains(@class,'value')]/text()").extract()

item = TescoItem()

item["text"] = "" if len(textelem)==0 else textelem[0]

item["price"] = "" if len(priceelem)==0 else priceelem[0]

print(item["text"] + " = "+item["price"])

self.data.append(item)

yield item

#Tutaj moze byc kod do gromadzenia linkow

#url = ###; #print ("WILL GOTO:"+url)

#yield scrapy.http.Request(url,self.parse)

69

Scrapy uruchomienie procesu w

notebooku

from scrapy.crawler import CrawlerProcess

process = CrawlerProcess({

'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0;
Windows NT 5.1)'

})

spider = TescoSpider

process.crawl(spider)

process.start()

print(spider.data)

#Uwaga: kazde uruchomienie wymaga restartu

#kernela notebooka....

70

Tworzenie projektu scrapy w konsoli....

1. Utwórz

 scrapy startproject tesco

 cd tesco

2. Edytuj plik items.py file – dodaj element
TescoItem

3. Utwórz w katalogu spiders plik tescospider.py

(następny slajd)

4. Uruchom:

 scrapy crawl -t json -o res.txt tesco

71

Scraping – dmozspider.py

(wersja dla konsoli)

import scrapy

import scrapy.http

from dmoz.items import TescoItem

class TescoSpider(scrapy.Spider):

name = „tesco"

allowed_domains = ["ezakupy.tesco.pl","tesco.pl"]

start_urls =\

start_urls =\

["https://ezakupy.tesco.pl/groceries/pl-
PL/shop/warzywa-owoce/all?page="+str(x) for x in
range(1,55)]

…………………….
72

Aby scraper odwiedzał strony trzeba

mu o tym powiedzieć...

#url = ###

#print ("WILL GOTO:"+url)

#yield scrapy.http.Request(url,self.parse)

73

Aby scraper odwiedzał strony trzeba

mu o tym powiedzieć...

for elem in response.xpath("//div[contains(@class, 'cat-item')]"):

url = "http://www.dmoz.org"+elem.xpath("a/@href").extract()[0]

print "NEW URL THAT SHOULD BE VISITED FOUND:"+url

yield scrapy.http.Request(url,self.parse)

74

Selenium – dla bardziej

skomplikowanych przypadków...

http://www.seleniumhq.org/

 Instalacja

 c:\Anaconda2\scripts\pip.exe install selenium

Geckodriver.exe

 https://github.com/mozilla/geckodriver/releases

 Rozzipuj i skopiuj *.exe do c:\Anaconda2

75

https://github.com/mozilla/geckodriver/releases

Selenium – przykładowy kod

from selenium import webdriver

from selenium.webdriver.common.keys import Keys

driver = webdriver.Firefox()

driver.get("http://www.python.org")

print driver.title

elem = driver.find_element_by_name("q")

elem.clear()

elem.send_keys("pycon")

elem.send_keys(Keys.RETURN)

print driver.page_source

driver.close()

76

Obliczenia numeryczne - numpy

77

Biblioteką numpy - obliczenia na

tablicach

from numpy import *

a = array([1,2,3])

b = array([4,5,6])

print a+b

print a*b

Uwaga! tablice to coś zupełnie innego niż listy:

print [1,2,3]+[4,5,6]

78

Elementy listy

b = np.arange(12).reshape(3,4)

b[2][3] = 100

Tak tez mozna

b[2,3] = 100

b[(2,3)] = 100

print "b=\n",b

79

Wymiary list

import numpy as np

vector = np.arange(15)

the same can be achieved by np.array(range(15))

a1 = np.reshape(vector,(3,5))

a2 = np.array([[1,2,3],[4,5,6]])

print "Dimension number of a1", a1.ndim

print "Dimensions ", a1.shape

print "Type a1", a1.dtype.name

print "Memory footprint", a1.itemsize

print "Number of elements in the array", a1.size

80

Listy a macierze

Arrays and matrix operators

print "element by element multiplication", a1*a1

print "Matrix multiplication", np.transpose(a1).dot(a1)

print "Matrix of ones\n", np.ones((3,4),dtype="int64")

print "Matrix of ones\n", np.ones((3,4),dtype="float64")

print "Matrix of zeros\n", np.zeros((3,4),dtype="int64")

print "Matrix of zeros\n", np.zeros((3,4),dtype="float64")

81

Typy elementów list

import numpy as np

threes = np.ones((3,4),dtype="int64")*3

fours = np.ones((3,4),dtype="int64")*4

print (threes/fours)

threesfloat = np.ones((3,4),dtype="float64")*3

np.linspace(0,10,10)

82

Prędkość obliczeniowa...

a = np.random.random((1000,1000))

b= a*5

del a

del b

timeit.timeit("import numpy as np;a =

np.random.random((1000,10000));print(np.sum(a))"

,number=10)

83

Osie tablic

b = np.arange(12).reshape(3,4)

print "b=\n",b

print "b column sum=\n",b.sum(axis=0)

print "b row =\n",b.min(axis=1)

print "b cumulative row sum=\n",b.cumsum(axis=1)

84

Łączenie tablic

import numpy as np

x = np.array([1,2,3,4,5])

y = np.array(range(6,11))

Zv = np.vstack((x,y))

Zh = np.hstack((x,y))

x1 = np.array([[1,2],[3,4]])

y1 = np.array([[5,6],[7,8]])

Zv1 = np.vstack((x1,y1))

Zh1 = np.hstack((x1,y1))

85

Wizualizacja danych

86

Wykresy

Python zawiera moduł matplotlib oferujący
funkcjonalność wzorowaną na środowisku
MATLAB

Funkcje "plot" do generacji wykresów jest
dostępna w dwu pakietach (do wyboru)

1. import pylab

albo

2. import matplotlib.pyplot

Wybór pierwszej opcji powoduje zaimportowanie
funkcji z pakietu numpy. My będziemy korzystać z

import matplotlib.pyplot

87

Generacja prostego wykresu

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='liniowa')

plt.plot(x, x**2, label='kwadratowa')

plt.plot(x, x**2*np.sin(x*30), \

label='sin')

plt.xlabel('os x')

plt.ylabel('os y')

plt.title("Tytul wykresu")

plt.legend()

plt.show()

88

Komponenty wykresu matplotlib

89

źródło :

http://matplotlib.org/faq/usage_faq.html

Przykład

dostosowanie osi histogramu

import numpy as np

import matplotlib.pyplot as plt

mu, sigma = 100, 15

x = mu + sigma * np.random.randn(10000)

plt.hist(x, 50, normed=1, facecolor='g')

plt.xlabel('Poziom IQ')

plt.ylabel('Prawdopodobieństwo')

plt.title('Histogram poziomu IQ w populacji')

plt.text(60, .025, r'$\mu=100,\ \sigma=15$')

plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

90

Bardziej praktycznie....

Odczyt danych z pliku + wykres

import csv

import matplotlib.pyplot as plt

import datetime

ifile = open('ceny_spot.txt', "r")

times = []

prices = []

reader = csv.reader(ifile, delimiter='\t')

no = 0

for row in reader:

no = no+1

if no > 1:

prices.append(row[3])

times.append(datetime.datetime.strptime(row[0],\

'%Y-%m-%dT%H:%M:%S.%fZ'))

ifile.close()

plt.plot(times,prices)

plt.show()

91

Odczyt danych z pliku + wykres

uwzględniamy strukturę zmian cen...

import csv

import matplotlib.pyplot as plt

import datetime

ifile = open('ceny_spot.txt', "r")

times = []

prices = []

reader = csv.reader(ifile, delimiter='\t')

no = 0

for row in reader:

no = no+1

if no > 1:

if (len(times) > 0):

prices.append(row[3])

times.append(times[-1])

prices.append(row[3])

times.append(datetime.datetime.strptime(row[0],\

'%Y-%m-%dT%H:%M:%S.%fZ'))

ifile.close()

plt.plot(times,prices)

plt.show()92

Pobieranie danych z Internetu

from pandas import read_csv

import urllib2

url = \

'http://szufel.pl/python/iris_data.csv'

response = urllib2.urlopen(url)

data = read_csv(response)

response.close()

Strona 93

Biblioteka pandas – czytanie ramki danych

from pandas import read_csv

import urllib.request as ul

url = 'http://szufel.pl/pliki/iris_data.csv'

response = ul.urlopen(url)

url = \

'http://szufel.pl/pliki/iris_data.csv'

response = urllib2.urlopen(url)

iris_df = read_csv(response)

response.close()

iris_df[1:3]

iris_df['petal_length']

Strona 94

Wizualizacja danych wielowymiarowych – scatter

plot matrix

cmap = {'Iris-setosa': 'red', \

'Iris-versicolor': 'green', 'Iris-virginica': 'blue'}

from pandas.tools.plotting import scatter_matrix

scatter_matrix(data,\

c=[cmap[cl] for cl in data['class']] ,marker='o')

95

Machine Learning i Data Mining

z językiem Python

- Sieć neuronowa

- Regresja logistyczna

- Drzewo decyzyjne

96

Scikit-learn – narzędzia data mininig

dla Pythona

http://scikit-learn.org

Ciągle w wersji beta

from sklearn import datasets

import numpy as np

iris = datasets.load_iris()

X = iris.data[:, [2, 3]]

y = iris.target

97 (przykład na podst. Raschka, 2015, Python Machine Learning)

Podział zbioru uczącego i skalowanie

from sklearn.cross_validation import \
train_test_split

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.3, \
random_state=0)

from sklearn.preprocessing import \
StandardScaler

sc = StandardScaler()

sc.fit(X_train)

X_train_std = sc.transform(X_train)

X_test_std = sc.transform(X_test)

98

Sieć neuronowa

from sklearn.linear_model import \

Perceptron

ppn = Perceptron(n_iter=50, eta0=0.1,\

random_state=0)

ppn.fit(X_train_std, y_train)

y_pred = ppn.predict(X_test_std)

print 'Bledow klasyfikacji: %d' %

(y_test != y_pred).sum()

99

Wizualizacja wyników
(na podst. Raschka, 2015, Python Machine Learning)

from matplotlib.colors import ListedColormap

import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

markers = ('s', 'x', 'o', '^', 'v')

colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')

cmap = ListedColormap(colors[:len(np.unique(y))])

x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

np.arange(x2_min, x2_max, resolution))

Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

Z = Z.reshape(xx1.shape)

plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)

plt.xlim(xx1.min(), xx1.max())

plt.ylim(xx2.min(), xx2.max())

X_test, y_test = X[test_idx, :], y[test_idx]

for idx, cl in enumerate(np.unique(y)):

plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], \

alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)

if test_idx:

X_test, y_test = X[test_idx, :], y[test_idx]

plt.scatter(X_test[:, 0], X_test[:, 1], c='', \

alpha=1.0, linewidth=1, marker='o', s=55, label='test set')

100

… i sama wizualizacja

X_combined_std = np.vstack((X_train_std, X_test_std))

y_combined = np.hstack((y_train, y_test))

plot_decision_regions(X=X_combined_std, \

y=y_combined, classifier=ppn, test_idx=range(105,150))

plt.xlabel('petal length [standardized]')

plt.ylabel('petal width [standardized]')

plt.legend(loc='upper left')

plt.show()

101

Regresja logistyczna

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(C=1000.0, random_state=0)

lr.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std, y_combined, \

classifier=lr, test_idx=range(105,150))

plt.xlabel('petal length [standardized]')

plt.ylabel('petal width [standardized]')

plt.legend(loc='upper left')

plt.show()

102

Drzewo decyzyjne

from sklearn.tree import DecisionTreeClassifier

tree = \
DecisionTreeClassifier(criterion='entropy', \

max_depth=3, random_state=0)

tree.fit(X_train, y_train)

X_combined = np.vstack((X_train, X_test))

y_combined = np.hstack((y_train, y_test))

plot_decision_regions(X_combined, y_combined, \

classifier=tree, test_idx=range(105,150))

plt.xlabel('petal length [cm]')

plt.ylabel('petal width [cm]')

plt.legend(loc='upper left')

plt.show()

103

Wizualizacja drzewa niestety wymaga

zewnętrznego narzędzia…

from sklearn.tree import export_graphviz

export_graphviz(tree,out_file='tree.dot', \

feature_names=['petal length', 'petal width'])

104

http://www.webgraphviz.com/

tree.dot

dot -Tpng tree.dot -o tree.png

Albo zainstalować Graphviz:

105

Drzewo decyzyjne – odczyt danych z

pliku CSV…

import csv

import urllib2

import numpy as np

from sklearn import tree

url = \

'http://szufel.pl/python/iris_data.csv'

response = urllib2.urlopen(url)

z = np.genfromtxt(response,delimiter=",",\

dtype=None,names=True)

response.close()

x = np.column_stack([z[name] for name in z.dtype.names[:-1]])

y = z[z.dtype.names[-1]]

clf = tree.DecisionTreeClassifier()

clf = clf.fit(x, y)

tree.export_graphviz(clf, out_file="c:/temp/tree.dot")

106

Wprowadzenie do metodyki

symulacyjnej

107

Symulacja

 Symulacja

Technika numeryczna, która polega na przeprowadzaniu

eksperymentów na modelu w celu uzyskania wiedzy na temat

wpływu parametrów wejściowych na wybrane mierniki wyjściowe, por.

Law (2007)

 System – „…zestaw elementów wzajemnie powiązanych

w sposób bezpośredni lub pośredni…” por. Ackoff (1971)

 Eksperyment - wzbudzanie systemu w kontrolowany sposób w

celu obserwacji jego reakcji

 Model - opis elementów systemu i relacji pomiędzy nimi

 Stan systemu - zbiór zmiennych (parametrów) niezbędnych do

opisu systemu w ustalonym okresie

Strona 108

Symulacja - wybrane zastosowania

Biznes

Modelowanie sieci

telekomunikacyjnych

Badanie wpływu sieci

społecznościowych na

decyzje klientów

Edukacja i trening

Pilotaż,

Gry militarne

Diagnostyka medyczna

Finanse

Planowanie awaryjnych

scenariuszy

Ocena ryzyka portfela

Wycena aktywów

Inżynieria produkcji

Projektowanie materiałów

(samochody, budynki)

Układ linii produkcyjnych

Przykład zastosowania symulacji

dlaczego kawa traci aromat w

obecności wody?

Przykład zastosowania symulacji

dlaczego kawa traci aromat w

obecności wody?

Strona 111

Rozwiązanie

modelowanie na poziomie kwantowym zachowania

cząstek wpływających na aromat kawy

model numeryczny – obliczenia na superkomputerach

Zamawiający

Nestle

Dostawca

IBM

Przykład modelu symulacyjnego –

zrozumienie procesu ewolucji
Karl Sims - Evolved Virtual Creatures, Evolution

Simulation, 1994

Kiedy stosować symulację?
por. Law (2007)

113

system = zestaw elementów wzajemnie powiązanych w sposób bezpośredni lub pośredni

[Ackoff , 1971]

Modelowanie systemu
opr. wł. na podst. Gilbert i Troitzsch (2005)

Analizowany

system

Model systemu Dane z procesu

symulacji

Dane z rzeczywistego

systemu

Modelowanie

konstrukcja abstrakcyjnej

reprezentacji systemu

Symulowanie

Obserwacja systemu

W
a
rs

tw
a
 s

y
s
te

m
u

W
a

rs
tw

a
 s

y
m

u
la

c
ji

Podobieństwo

Etapy procesu symulacji

Źródło: opr. wł. na podstawie: Bennett (1995),Schroeder (1993), Law (2007)

Problem

Model systemu

Programowanie

Dane wejściowe i kalibracja

Walidacja

Eksperymentowanie

Wnioski i rekomendacje

Weryfikacja

Modelowanie

Implementacja

Testowanie

Eksperymentowanie

Budowa modelu systemu - trzeba określić...

 ... Procedury przyrostu czasu:

 Stałe – przegląd działań,

 Zmienne - przyrosty odpowiadają kolejnym zdarzeniom

 ... Warunki początkowe i stabilizacja modelu

 Minimalizacja okresu rozruchu,

 Minimalizacja obciążenia wyników.

 ... Długość eksperymentu:

 Do osiągnięcia zbieżności do częstości empirycznych – zm.

wejściowe

 Do osiągnięcia zbieżności statystycznej – mierniki wyjściowe,

 Do uzyskania jednoznacznych wyników w testach statystycznych,

 Arbitralny czas wynikający ze specyfiki modelowanego systemu

Dane wejściowe i kalibracja

Dane wejściowe

 Dane empiryczne umieszczane bezpośrednio w

modelu

 Eksperci

 Dopasowywanie rozkładów zmiennych losowych

(testy statystyczne KS, AD, Chi-kwadrat)

Kalibracja

 Poszukiwanie zestawów parametrów

prowadzących do zachowania modelu podobnego

do rzeczywistego systemu

 Analiza wrażliwości

117

Weryfikacja i walidacja

modeli symulacyjnych

 Weryfikacja – dowodzenie, że model zachowuje się

zgodnie z założeniami

 Metody inżynierii oprogramowania

 testy jednostkowe (unit testing)

 Debuggowanie - Śledzenie obiektów w systemie

 Dokumentacja – diagramy UML i inne, pseudo-kod

 Animacja

 Walidacja – dowodzenie, że model poprawnie opisuje

system rzeczywisty

 Reprezentatywność danych wyjściowych

 Porównanie modelu ze scenariuszami historycznymi

 Porównanie z innymi modelami, w tym warunki brzegowe

 Analiza wrażliwości modelu symulacyjnego

Strona 118

Inne techniki weryfikacji i walidacji

modelów symulacyjnych

Animacja – obserwacja zachowania się modelu w

ruchu

Określenie reprezentatywności danych

wejściowych (testy statystyczne, eksperci)

Walidacja zdarzeniowa – konfrontacja zdarzeń

modelowych z realnie działającym systemem

(m.in. testy warunków ekstremalnych)

Śledzenie obiektów w systemie

Porównanie z innymi modelami

Strona 119

Oceny

decyzji

Symulacyjne wspomaganie decyzji

 Eksperymentalna ocena wpływ zjawisk losowych na sytuację
decyzyjną
 Model rzeczywistego systemu
 Ocena reakcji systemu na zmiany zasad działania lub zmiany

struktury systemu
 Eksperyment powtarzamy wielokrotnie w celu oszacowania

rozkładu zmiennej losowej opisującej skutki decyzji

120

Model

symulacyjny
D ecyzja

Scenariusz

Parametry modelu
(znane)

Zmienne losowe
(niepewność)

Meta-modelowanie - analiza wyników

symulacji

Konstrukcja modeli opisujących wyniki
eksperymentów złożonych modeli symulacyjnych
 Modele ekonometryczne

 Modele eksploracji danych (klasyfikacyjne, reguły
asocjacyjne, analiza skupień)

Symulacja-optymalizacja – poszukiwanie
parametrów modelu symulacyjnego
maksymalizujących wartości oczekiwane
zmiennych wynikowych
 algorytmy genetyczne i symulowane wyżarzanie

 Stochastic kriging

 Cross entropy method

121

Wybrane rozkłady zmiennych

losowych w języku Python

122

Rozkłady dostępne w Pythonie - numpy
http://docs.scipy.org/doc/numpy/reference/routines.random.html

 beta(a, b[, size])

 binomial(n, p[, size])

 chisquare(df[, size])

 dirichlet(alpha[, size])

 exponential([scale, size])

 f(dfnum, dfden[, size])

 gamma(shape[, scale, size])

 geometric(p[, size])

 gumbel([loc, scale, size])

 hypergeometric(ngood, nbad, nsample[, siz
e])

 laplace([loc, scale, size])

 logistic([loc, scale, size])

 lognormal([mean, sigma, size])

 logseries(p[, size])

 multinomial(n, pvals[, size])

 multivariate_normal(mean, cov[, size])

 negative_binomial(n, p[, size])

123

 noncentral_chisquare(df, nonc[, size])

 noncentral_f(dfnum, dfden, nonc[, size]
)

 normal([loc, scale, size])

 pareto(a[, size])

 poisson([lam, size])

 power(a[, size])

 rayleigh([scale, size])

 standard_cauchy([size])

 standard_exponential([size])

 standard_gamma(shape[, size])

 standard_normal([size])

 standard_t(df[, size])

 triangular(left, mode, right[, size])

 uniform([low, high, size])

 vonmises(mu, kappa[, size])

 wald(mean, scale[, size])

 weibull(a[, size])

 zipf(a[, size])

Rozkład normalny
normal([loc, scale, size])

124

Ciągły rozkład

prawdopodobieństwa

Charakteryzowany

przez parametry
 Położenie (średnia) 

 Skala (odchylenie

standardowe) 

Zapisujemy N(,)

źródło ilustracji: wikipedia.org

Rozkład logarytmiczno-normalny
lognormal([mean, sigma, size])

Ciągły rozkład
prawdopodobieństwa

Charakteryzowany
przez parametry

Położenia 

Rozproszenia 

Wartości cechy o
rozkładzie LN(,) po
logarytmizacji mają
rozkład N(,)

Występowanie
kursy akcji giełdowych (ważne, o

ile procent zmienia się cena, a
nie, o ile złotych)

ceny nieruchomości [zł/m2]
Przybliża rozkład cech, gdzie

istotne są ilorazy wartości, a nie
różnice pomiędzy nimi

Rozkład logarytmiczno-normalny
lognormal([mean, sigma, size])

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

W
a
rt

o
ś
c
i

fu
n

k
c
ji

 g
ę
s
to

ś
ć
i

p
ra

w
d

o
p

o
d

o
b

ie
ń

s
tw

a

Wartości cechy

Funkcja gęstości rozkładu log-normlanego

mi=0,5; std=0,5

mi=1; std=1

mi=3; std=3

 = 0.5  = 0.5
 = 1  = 1

 = 3  = 3

Rozkład Poissona
poisson([lam, size])

 Dyskretny rozkład
prawdopodobieństwa

 Zakładamy, że pojedyncze
wydarzenia występują ze
znaną średnią
częstotliwością, , >0, i
w sposób niezależny od
siebie

 Rozkład Poissona wyraża
prawdopodobieństwo
wystąpienia określonej
liczby wydarzeń,
k=0,1,2,…, w ustalonym
czasie

Wartość oczekiwana

E(k)=

Wariancja

D2(k)=

 Dominanta

 ∈ ℤ :  – 1 oraz 

∉ ℤ : 

Występowanie
Liczba połączeń

przychodzących do centrali
telefonicznej na sekundę

Liczba uderzeń pioruna w
powiecie grajewskim w
sierpniu

Liczba wypadków drogowych
w Warszawie w ciągu dnia

Rozkład Poissona
poisson([lam, size])

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10

P
ra

w
d

o
p

o
d

o
b

ie
ń

s
tw

o

z
a
jś

c
ia

 k
 z

d
a
rz

e
ń

Liczba zdarzeń k

Funkcja gęstości rozkładu Poissona

przy lambda =0.1; 1; 4

lambda=0,1

lambda=1

lambda=4

Rozkłady dostępne w Pythonie - numpy
http://docs.scipy.org/doc/numpy/reference/routines.random.html

 beta(a, b[, size])

 binomial(n, p[, size])

 chisquare(df[, size])

 dirichlet(alpha[, size])

 exponential([scale, size])

 f(dfnum, dfden[, size])

 gamma(shape[, scale, size])

 geometric(p[, size])

 gumbel([loc, scale, size])

 hypergeometric(ngood, nbad, nsample[, siz
e])

 laplace([loc, scale, size])

 logistic([loc, scale, size])

 lognormal([mean, sigma, size])

 logseries(p[, size])

 multinomial(n, pvals[, size])

 multivariate_normal(mean, cov[, size])

 negative_binomial(n, p[, size])

129

 noncentral_chisquare(df, nonc[, size])

 noncentral_f(dfnum, dfden, nonc[, size]
)

 normal([loc, scale, size])

 pareto(a[, size])

 poisson([lam, size])

 power(a[, size])

 rayleigh([scale, size])

 standard_cauchy([size])

 standard_exponential([size])

 standard_gamma(shape[, size])

 standard_normal([size])

 standard_t(df[, size])

 triangular(left, mode, right[, size])

 uniform([low, high, size])

 vonmises(mu, kappa[, size])

 wald(mean, scale[, size])

 weibull(a[, size])

 zipf(a[, size])

Generacja liczb losowych w Pythonie

Zaimportuj bilbiotekę

import numpy as np

Zainicjalizuj generator liczb losowych - ustal stałą

losowania

np.random.seed(0)

Wybierz rozkład xxxxx i losuj

np.random.xxxxx

130

Studium przypadku
prosta analiza symulacyjna - PlusMinus

"Firma PlusMinus importuje do Polski z Chin kurtki

narciarskie. Pomiędzy złożeniem zamówienia a

przypłynięciem kontenera z Chin upływa 6

miesięcy. 12 pracowników firmy PlusMinus niezależnie

oszacowało popyt na kurtki w nadchodzącym sezonie na

[14000, 13000, 14000, 14000, 15500, 10500, 16000,

8000, 5000, 11000, 8000, 15000] sztuk.

Kurtki są kupowane w Chinach w cenie 80zł/szt.,

a następnie sprzedawane do hurtowni w Polsce po 100

zł/szt. Jeżeli kurtki nie zostaną sprzedane w sezonie to

ich cena hurtowa spada do 40zł/szt. Całkowity koszt

transportu kontenera z Chin wynosi 100'000zł."
131

Model symulacyjny - implementacja

import numpy as np

popyt = np.array([14000, 13000, 14000, 14000, 15500,\

10500, 16000, 8000, 5000, 11000, 8000, 15000])

cena_ch, cena_pl, cena_wyprz = 80, 100, 40

koszt_imp = 100000

srednia = np.average(popyt)

odch_std = np.std(popyt, ddof=1)

np.random.seed(0)

popyt_symul = np.random.normal(srednia,odch_std,10000)

zakupy = 12000

zyski = [min(popyt,zakupy)*cena_pl+ \

max(zakupy-popyt,0)*cena_wyprz - zakupy*cena_ch - \

koszt_imp for popyt in popyt_symul]

132

Model symulacyjny - decyzje

zyski = {}

scenariusze = list(range(10000,15000,1000))

for zakupy in scenariusze:

zyski[zakupy] = \

[min(popyt,zakupy)*cena_pl+ \

max(zakupy-popyt,0)*cena_wyprz - \

zakupy*cena_ch - koszt_imp \

for popyt in popyt_symul]

133

Model symulacyjny - wizualizacja

wyników

import numpy as np

import matplotlib.pyplot as plt

mu, sigma = 100, 15

plt.cla()

plt.hist([zyski[zakupy] for zakupy in scenariusze], \

50, normed=1, \

label=["zakupy="+str(zakupy) for zakupy in scenariusze])

plt.xlabel('Zysk')

plt.ylabel('Prawdopodobienstwo')

plt.title('Rozklad poziomu zyskow')

plt.grid(True)

plt.legend(loc=2)

plt.show()

134

Proste studium przypadku -

Wilton Toy Company

135

Studium przypadku – Wilton Toy Company
(treść na podst. Grindley, 1980)

 Firma Wilton Toy Company specjalizuje się w produkcji zabawek.

Zarząd firmy planuje rozszerzyć linię produktów.

 Rozważane są dwie opcje

 Pistolety (najbardziej prawdopodobna jest sprzedaż 30’000szt. po

cenie $4 przy kosztach budowy linii produkcyjnej $110’000,

spodziewane koszty stałe $4’000/rok, a koszty zmienne $3/szt)

 Motocykle (najbardziej prawdopodobna jest sprzedaż 6’000szt., po

cenie $11,50, przy kosztach budowy linii produkcyjnej $116’000,

spodziewane koszty stałe $5’000/rok, a koszty zmienne $6/szt)

 Jako kryterium oceny przedsięwzięć w Wilton przyjęto wskaźnik

ROI (Return on Investment)

 ROI = Zysk netto / koszty inwestycji

 Pistolety 23.6%

 Motocykle 24.1%

 Firma Wilton zatrudniła konsultanta celem

dokładniejszego zbadania niepewności dotyczącej

założeń modelu

Wilton c.d.
(treść na podst. Grindley, 1980)

Sprzedaż

Sztuki

Prawdopod., że wielkość nie

zostanie przekroczona

P
is

to
le

ty

24 000 5%

28 000 30%

30 000 50%

31 000 75%

33 000 95%

36 000 100%

Wilton Toy Company c.d.

 Odwracanie dystrybuanty F(x) = P(X ≤ x)

 przyporządkuj wartości liczb losowych do przedziałów dystrybuanty

 wylosuj liczbę losową i znajdź ją w przedziale dystrybuanty

 wyznacz wartość zmiennej losowej odpowiadającą wartości dystrybuanty

Jak generować liczby losowe

Metoda odwracania dystrybuanty

































06 dla 1

6x5 dla 5/6

5x4 dla 4/6

4x3 dla 3/6

3x2 dla 2/6

2x1 dla 1/6

1 dla 0

)(

x

xF

0

1/6

1/3

1/2

2/3

5/6

1

0 1 2 3 4 5 6 7

Teoretycznie

Symulacja

Wilton Toy Company - dane wejsciowe

sprz_pr=[[0.05,0.25,0.20,0.25,0.20,0.05],\

[0.05,0.25,0.20,0.30,0.15,0.05]]

sprz=[[24000,28000,30000,31000,33000,36000],\

[2500,3500,6000,7500,9000,11000]]

koszt_pr=[[0.05,0.20,0.15,0.10,0.20,0.20,0.10],\

[0.05,0.15,0.20,0.10,0.25,0.15,0.10]]

koszt=[[2.94,2.96,2.98,3.00,3.02,3.04,3.07],\

[5.85,5.90,5.95,6.00,6.05,6.10,6.15]]

inwest_pr=[[0.05,0.10,0.15,0.20,0.30,0.20],\

[0.05,0.20,0.25,0.20,0.20,0.10]]

inwest=[[106000,108000,109000,110000,112000,115000],\

[113000,115000,116000,118000,120000,123000]]

140

Metoda odwracania dystrybuanty dla

rozkładu dyskretnego w Pythonie

def losuj_wagi(values, probs, size):

bins = np.add.accumulate(probs)

return np.array(values)[\

np.digitize(\

rd.random_sample(size), bins)]

141

Porównywanie i ocena wyników

symulacji

142

Porównywanie wyników

Testy statystyczne

 Średnie (istotność różnicy)

 Przedziały ufności

Badanie dominacji stochastycznej

 Inne…

Analiza wyników symulacji
podstawowe miary statystyczne
 Liczebność próby a (liczba symulacji) n len(a)

 Wartość minimalna i maksymalna (np.min(a), np.max(a))

 Średnia z próby u= np.average(a)

 Odchylenie standardowe s = np.std(a,ddof=1)

 Wariancja s2

 Skośność (miara asymetrii)

 Kurtoza (miara spłaszczenia)

 Kod Python - moduł stats
import scipy.stats

n, min_max, srednia, wariancja, skosnosc, kurtoza = \
stats.describe(s)

144

Analiza wyników symulacji
porównywanie średnich

 Testy statystyczne (dla dużej próby = „wystarczającej” liczby symulacji)

 Test na istotność różnicy pomiędzy średnimi, żaden z parametrów
nie jest znany, rozkład nie jest znany

H0 m1 = m2

H1 m1 ≠ m2

scipy.stats.ttest_ind(a, b, equal_var=False)

 Estymacja przedziałowa średniej (dla dużej próby)

import numpy as np

x = np.mean(a),

z = scipy.stats.sem(a) * sp.stats.t._ppf(1-alfa/2., n-1)

przedział = (x-z, x+z)

2

2

2

1

2

1

21

n

S

n

S

XX
U






145

Dominacja stochastyczna

Porównujemy dwa rozkłady

prawdopodobieństwa cechy ciągłej x: F(x)

oraz H(x)

np. rozkład zysku przy inwestycjach F: f(x)

oraz H: h(x)

h(x)

f(x)

x (zysk)

h
(x

),
 f

(x
)

p
ra

w
d

o
p
o
d
o
b
ie

ń
s
tw

o

Analiza wyników symulacji
Dominacja stochastyczna

Porównujemy dwa rozkłady

prawdopodobieństwa cechy ciągłej x: F(x)

oraz G(x)

np. rozkład zysku przy inwestycjach H: h(x)

oraz G: g(x)

h(x)

g(x)

x

f(x)

Analiza wyników symulacji

x

F(x)

H(x)

F(x)

F(x) ≻ H(x)  x H(x)  F(x) ∧ ∃x H(x) > F(x)

148

Dominacja stochastyczna I rzędu:
zmienna losowa F dominuje stochastycznie zmienną losową H, jeżeli

jej wartości jej dystrybuanty są nie większe i w przynajmniej jednym

punkcie mniejsze a dokładnie:

VaR / EaR / EPSaR / CFaR / CCFaR

/ LaR

 Jeśli rozważana zmienna cechuje się rozkładem o
dystrybuancie , to VaR podaje poziom strat względem W0
przy poziomie ufności , wtedy szansa przekroczenia VaR
wynosi 1- 

P(W ≤ W0-VaR) = 1-

 Np. Jeśli W0=0, to VaR95 = --1(0,05) – jest jedynie 5% szans,
że realne straty będą większe niż VaR95, VaR99 = - -1(0,01)

F(x) (x)

VaR95 = 200k

0VaR95 = 200k

(x)

x

f(x)

5%

CVaR / ES

 Jeśli rozważana zmienna cechuje się rozkładem o
dystrybuancie , to CVaR podaje przeciętny poziom
najgorszego 1-  odsetka strat

 Np. CVaR = – 100/100-  · ∫x<-Var x·(x)dx

– przeciętny poziom najgorszych 5% wyników wynosi CVaR95

(x)

x

f(x)

0

5%

VaR95 = 200k

CVaR95 = 300k

Przykład - badanie dominacji

stochastycznej

import statsmodels.api as sm

import numpy as np

import matplotlib.pyplot as plt

plt.cla()

for zakupy in scenariusze:

x = np.linspace(min(zyski[zakupy]),max(zyski[zakupy]),100)

ecdf = sm.distributions.ECDF(zyski[zakupy])

plt.plot(x,ecdf(x), label= "zakupy="+str(zakupy))

x1,x2,y1,y2 = plt.axis()

plt.axis((x1,x2,y1,1.1))

plt.xlabel('Zysk')

plt.ylabel('Skumulowane prawdopodobienstwo')

plt.title('Dystrybuanty poziomu zyskow')

plt.grid(True)

plt.legend(loc=2)

plt.show()

151

Studium przypadku
prosty model analizy ubezpieczeniowej

152

Prosty przykład ubezpieczeniowy

Firma ubezpieczeniowa dokonuje rekalkulacje składki
dla ubezpieczenia komunikacyjnego.

Historyczne dane o liczbie szkód przedstawia tabela:

l_szkod = { # liczba szkod : liczba polis

0 : 3437,

1 : 522,

2 : 40,

3 : 2,

4 : 0,

5 : 0

}

153

Historia szkód…

 https://szufel.pl/pliki/szkody.txt

1;4365

2;27088

3;585

4;1104

5;54581

6;7084

7;819

8;12192

9;1649

10;12609

11;6440

12;1546

13;3656

154

Dobór parametrów modelu
import csv

import urllib2 as ul #import urllib.request as ul

import codecs

import matplotlib.pyplot as plt

import scipy as sc

from scipy.stats.stats import kstest

srednia_l_szkod = sum([x*y for x,y in l_szkod.items()])/sum(l_szkod.values())

szkody = []

response = ul.urlopen('http://szufel.pl/pliki/szkody.txt')

data = csv.reader (codecs.iterdecode(response, 'utf-8') ,delimiter=";")

for row in data:

szkody.append(int(row[1]))

plt.hist(szkody,bins=20)

plt.show()

szkody_ln = sc.log(szkody)

plt.hist(szkody_ln,bins=20)

plt.show()

print("Test KS",kstest(szkody_ln, sc.stats.norm.cdf, args=(sc.mean(szkody_ln),sc.std(szkody_ln))))

#H0 – rozkład normalny – p-value=0.99 brak podstaw do odrzucenia H0

sr_szkoda_ln = sc.mean(szkody_ln)

std_szkoda_ln = sc.std(szkody_ln)

155

Model ubezpieczeniowy
import numpy.random as rd

def symuluj_ubezpieczenia(l_klientow,nadwyzka,skladka,srednia_l_szkod,sr_szkoda_ln,std_szkoda_ln):

daty_umow = rd.randint(0,365, l_klientow)

kal_l_wplat = np.zeros(365+365+30, dtype="int")

for dataUmowy in daty_umow:

kal_l_wplat[dataUmowy] += 1

l_szkod_k = rd.poisson(srednia_l_szkod,l_klientow)

kal_l_wyplat = np.zeros(365+365+30, dtype="int") #365 to zapas

for k in range(l_klientow):

for s in range(l_szkod_k[k]):

#dla kazdej szkody ustal date wyplaty

data_wyp = daty_umow[k]+rd.randint(0,365)+rd.randint(15,30)

kal_l_wyplat[data_wyp] += 1

for dzien in range(len(kal_l_wyplat)):

nadwyzka += kal_l_wplat[dzien]*skladka

l_wyplat = kal_l_wyplat[dzien]

odszkodowania = 0

if l_wyplat>0:

odszkodowania=np.sum(rd.lognormal(sr_szkoda_ln,std_szkoda_ln,l_wyplat))

if (nadwyzka<odszkodowania):

return (nadwyzka-odszkodowania, dzien)

nadwyzka -= odszkodowania

return (nadwyzka, dzien)

156

Przeszukiwanie przestrzeni

parametrów modelu
def run_symulacja(blok):

l_szkod = { # liczba szkod : liczba polis

0 : 3437,

1 : 522,

2 : 40,

3 : 2,

4 : 0,

5 : 0

}

srednia_l_szkod = sum([x*y for x,y in l_szkod.items()])*1./sum(l_szkod.values())

sr_szkoda_ln = 7.9953648143576634

std_szkoda_ln = 0.9644771368064744

with open("C:\\temp\\wynik"+str(blok)+".txt","w") as f:

cs = csv.writer(f,delimiter="\t",quotechar=None)

for skladka in range(500+blok*100,500+(blok+1)*100,25):

rd.seed(0)

wyniki=[symuluj_ubezpieczenia(10000,10000,\
skladka,srednia_l_szkod,sr_szkoda_ln,std_szkoda_ln) \

for i in range(100)]

srednia = np.mean([x[0] for x in wyniki if x[0] >= 0])

liczba_ruin = np.sum([1 for x in wyniki if x[0] < 0])

sredni_dzien_ruiny = np.mean([x[1] for x in wyniki if x[0] < 0])

cs.writerow([skladka,srednia,liczba_ruin,sredni_dzien_ruiny])

157

Studium przypadku
- modelowanie chmury

158

Bardziej zaawansowany model...
optymalizacja kosztów portalu internetowego w chmurze

 Popularny polski portal internetowy buziewalbumie
spodziewa się wzmożonego ruchu w okresie
świątecznym. Portal korzysta obecnie korzysta z 300
serwerów Amazon EC2 typu c3.4xlarge w regionie us-
east-1, które zostały zarezerwowane w cenie 0.42$/h.
Każdy serwer c3.4xlarge w danej minucie może
obsłużyć jednocześnie 100 użytkowników portalu.

 Portal zarabia na śledzeniu swoich użytkowników i
sprzedawaniu wszystkim chętnym danych
przechowywanych i przetwarzanych przez
użytkowników. Rząd Państwa Miłującego Pokój
(PMP) zaoferował firmie 0.00021$ za każdą minutę
szczegółowych danych o aktywności użytkowników w
okresie świątecznym żądając przy tym wyłączności.

159

Zaawansowany model c.d.

 Firma buziewalbumie szacuje, że w okresie
świątecznym w każdej minucie z portalem będzie
próbowało się łączyć średnio 40'000 osób z
odchyleniem standardowym 5'000. Firma rozważa:

 wynajem serwerów on-demand w cenie 0.84$

 zakup serwerów spot

 Uwaga! Przyjęte uproszczenia: W analizie pomijamy
dobowe wahania liczby użytkowników oraz
zakładamy rozważamy czas w odstępach minutowych

160

Więcej o rynku Amazon EC2 spot

 Rynek aukcyjny

 Ceny niższe o około 80-90% od cen on-demand

 Bardzo duża zmienność (czasami c.spot >

c.on_demand)

 Jeżeli cena spot przekroczy bid to instancja jest

bezwarunkowo zabijana

 "Darmowy lunch" - jeżeli Amazon zabije instancję

to nie płaci się za nieukończone godziny

 Od 2015-01-06 2-minute termination notice

ceny spot: c3.8xlarge us-east-1a ostatni tydzień maja

2014

Przykład - bid 0.14$

Legenda

— cena spot

— bid

— cena do zapłaty

— średnia cena za

godzinę

— warmup time

cena USD

Symulator kosztów spot...
def estimate_cost_d (self, bid_price, zone_machine, start_datetime, end_datetime=None,

warmup_time_s=0,request_time_s=None,request_sim_runs=None,single_sim_time_s=1,use_full_last_hour=T

rue,stop_on_terminate = False):

""" Calculates computing costs for a given bid at given time zone and starting at specific

point of time.

Keyword arguments:

bid_price -- the bid

zone_machine -- a tuple of (zone, machine)

start_datetime -- the datetime when the bid was placed

end_datetime -- maximum time (the instance will be terminated at this time even if

requested simulations are not finished)

warmup_time_s -- warmup time in seconds for a newly started instance (e.g. server

boot-up time)

request_time_s -- computation time in seconds that was request by a user

request_sim_runs -- number of simulation runs requested by a user

single_sim_time_s -- time to run a single simulation in seconds

use_full_last_hour -- use fully the last hour to run additional simulations than

requested by the user

stop_on_terminate -- stop adding time as soon as the instance is terminated due to

spot price increase

"""

163

Symulator kosztów

import datetime

import ec2_spot_pricing_simulator as ecs

sim = ecs.Ec2Simulator("ceny_spot_04072014.txt",\

"2014-06-01","2014-06-15")

start = datetime.datetime.strptime(\

"2014-06-03","%Y-%m-%d")

end = datetime.datetime.strptime(\

"2014-06-05","%Y-%m-%d")

sim.estimate_cost_d(0.5,(\

"us-east-1a","c3.large"),\

start,end,single_sim_time_s=3600)

164

Optymalizacja kosztów

Decyzje

 ile serwerów on-demand?

 ile serwerów spot?

 jaki bid (jaka oferta na rynku spot?)

165

Analiza sieci w języku Python

166

Sieci społeczne

167

Sieci elektryczne

http://commons.wikimedia.org/wiki/File:UnitedStatesPowerGrid.jpg
168

Internet

169

http://en.wikipedia.org/wiki/File:Internet_map_1024.jpg

Sieci finansowe

170
źródło: http://www.sciencemag.org

Obszary analizy sieciowej

171

Dynamics

on networks

 Analiza złożonych

systemów w których

występują zależności

sieciowe

 Np.

Rynki ekonomiczne

Dynamics

of networks

 Analiza procesu

tworzenia się sieci

Np.

Powstawanie firm i

instytucji finansowych

Sieć = Graf

172

1

2

3

4

5

Wierzchołki (węzły),

vertices(nodes)

atrybuty (cechy)

 Krawędzie (połączenia)

edges (links)

kierunek

wagi

Python:

import networkx as nx

g = nx.Graph()

6

Graf

Graf (graph) - zbiór wierzchołków, które mogą być

połączone krawędziami

Graf skierowany (directed) – graf z krawędziami

posiadającymi kierunek (początek i koniec)

Droga (path) – uporządkowany podzbiór sąsiadujących

krawędzi

Graf spójny (connected) – dla każdego wierzchołka

istnieje droga do każdego innego wierzchołka

17

3

Tworzenie i wizualizacja sieci w języku Python

174

import networkx as nx

g = nx.Graph()

for n in range(10):

g.add_node(n)

for n in range(10):

g.add_edge(n,n+1 if n+1 < 10 else 0)

pos = nx.shell_layout(g)

nx.draw(g, pos)

nx.draw_networkx_labels(g,pos,\

{n : str(n) for n in g.nodes_iter()},\

font_size=16)

Sposób zapisu grafu

175

Macierz sąsiedztwa

(adjacency matrix)

nx.adjacency_matrix(g)

[[0. 1. 0. 0.]

[1. 0. 1. 1.]

[0. 1. 0. 0.]

[0. 1. 0. 0.]]

Listy sąsiedztwa

(adjacency list)

g.adjacency_list()

[[2], [1, 3, 4], [2],

[2]]

1

4

2

3

176

Wybrane typy grafów

 Graf pełny (complete) - wszystkie wierzchołki są

połączone

 Graf regularny (regular) stopnia n – z każdego

wierzchołka wychodzi n łuków

 Graf dwudzielny (bipartite graph, n-partite graph) –

zbiór wierzchołków można podzielić na dwa podzbiory

takie że ich wierzchołki nie są połączone

 Pełny graf dwudzielny

 Grafy planarne - można przedstawić na płaszczyźnie

tak, że nie przecinają się łuki

Graf pełny (ang. complete graph)

Wszystkie wierzchołki są ze sobą połączone…

177

Graf regularny (ang. Regular graph)

Wszystkie wierzchołki są tego samego

k-tego stopnia

178

Graf dwudzielny (bipartite graph, n-

partite graph)

 Graf dwudzielny (bipartite graph, n-partite graph) –
zbiór wierzchołków można podzielić na dwa podzbiory
takie że ich wierzchołki nie są połączone

179

=

Graf planarny

można przedstawić na płaszczyźnie

w taki sposób, że nie przecinają się łuki

180

Sieci małego świata …

181
Źródło: https://web.facebook.com/note.php?note_id=10150388519243859&_rdr

Typy sieci ...

źródło: Duncan J. Watts and Steven H. Strogatz (1998) Collective

dynamics of 'small-world' networks, Nature 393, 440-442
182

Sieci bezskalowe (scale-free networks)

Wiązanie preferencyjne (ang. preferential

attachment)

Rozkład węzłów -

prawdopodobieństwo,

że węzeł posiada k połączeń

(ang. power-law distribution)

183

Generacja grafów w modelach

symulacyjnych

 Sieci losowe
 połączenia pomiędzy wierzchołkami są generowane w

sposób losowy
 nx.erdos_renyi_graph(n, p[, seed, directed])

 nx.fast_gnp_random_graph(n, p[, seed, directed])

 Sieci regularne
 z każdego wierzchołka wychodzi dokładnie n łuków
 nx.random_regular_graph(d, n[, seed])

 Sieci małego świata (small world networks)
 Niewielka odległość pomiędzy dwoma sąsiadującymi

węzłami
 nx.watts_strogatz_graph(n, k, p[, seed])

 Sieć bezskalowa (scale free network)
 Generacja algorytmem preferential attachment

nx.barabasi_albert_graph(n, m, seed=None)

184

Grafy skierowane, nieskierowane i

ważone...

185

1

4

2

3

Długość ścieżki w grafie

nx.shortest_path_length(g,a,b)

1

4

2

3

1

4

2

3

g = nx.Graph()

g = nx.DiGraph()

g.add_weighted_edges_from([(2,1,1.5)])

Przykład - marketing szeptany

Firma farmaceutyczna FarHaz ma zamiar

wprowadzić na rynek nowy suplement diety o

nazwie FarSup7 zapewniający piękny odcień

skóry. Nie ma żadnych badań naukowych

potwierdzających wpływ specyfiku na zdrowie ani

jego skuteczność dlatego firma może polegać

wyłącznie na marketingu szeptanym. Na ten sam

rynek właśnie ma zamiar wejść groźny konkurent

- firma BioSio oferujący środek PlaceBio

posiadający dokładnie ten sam skład...

186

Przykład - marketing szeptany c.d.

 Osoby kupujące suplementy diety mogą mieć jedną z
trzech opinii na temat produktów FarSupt7 i PlaceBio

0. Nie slyszałem

1. żaden z produktów nie jest skuteczny

2. lepszy jest produkt FarSup7

3. lepszy jest produkt PlaceBio

 Potencjalni klienci cały czas rozmawiają ze sobą na
temat produktów na portalu internetowym "MojaCera"
i w ten sposób na wzajem wpływają na swoją opinię o
ich skuteczności.

 Firma FarHaz ustaliła, że BioSio ma zamiar umieścić
na forum 3 swoich pracowników, którzy będą udawać
zadowolonych użytkowników produktu PlaceBio.

 Ile osób powinna wprowadzić firma FarHaz jeżeli
wiadomo, że forum liczy 100 użytkowników, a każdy
użytkownik ma średnio 3 kontaktów w portalu.

187

Marketing szeptany - inicjalizacja sieci
import matplotlib.pyplot as plt

import networkx as nx

import numpy as np

size, p, f1, f2 =100, 0.1, 10, 10

np.random.seed(0)

g = nx.erdos_renyi_graph(size, p)

pos = nx.spring_layout(g)

for n in g.nodes_iter():

g.node[n]['state'] = 0

f1_count = 0

for n in np.random.choice(list(g.nodes_iter()),f1+f2,False):

if f1_count < f1:

g.node[n]['state'] = 1

f1_count += 1

else:

g.node[n]['state'] = 2

plt.cla()

nx.draw(g, pos,node_color=[g.node[n]['state'] for n in g.nodes_iter()])

nx.draw_networkx_labels(g,pos,\

{n : str(n) for n in g.nodes_iter()}, font_size=16)188

Dynamika modelu

nodes_to_say = [n for n in g.nodes_iter() \

if g.node[n]['state'] > 0]

speaker = np.random.choice()

if g.neighbors(speaker) != []:

listener = np.random.choice(g.neighbors(speaker))

g.node[listener]['state'] = \

g.node[speaker]['state']

189

Opakowanie wizualizacji...
http://pycx.sourceforge.net

import matplotlib; matplotlib.use('qt4agg')

import networkx as nx

import numpy as np

import matplotlib.pyplot as plt

size,p,f1,f2=100,0.1,10,10

np.random.seed(0)

g = None

pos = None

def init():

global pos, g

#tutaj kod inicjulizaujacy

def draw():

plt.cla()

#tutaj wizualizacja stanu sieci

def step():

#tutaj dynamika sieci

def firma1(newValue=f1):

global f1;f1 = newValue;return f1

def firma2(newValue=f2):

global f2;f2 = newValue;return f2

import pycxsimulator

pycxsimulator.GUI(title='Informacja w sieci',interval=0, \

parameterSetters = [firma1,firma2]).start(func=[init,draw,step])190

Modele symulacyjne w języku

Python w chmurze

Potrzebne oprogramowanie:

• putty

• WinScp lub FileZilla

• przeglądarka internetowa

191

Scenariusze wdrożeniowe dla obliczeń

symulacyjnych w chmurze

Wynajęcie jednej kilku "dużych komputerów" -
zależnie od typu problemu
 "Obliczeniożerny" - C4.8xlarge
 36 rdzeni Intel Xeon

 60GB RAM

 "Pamięciożerny" r3.8xlarge
 32 rdzeni Xeon (nieco słabszych do C4)

 244 GB RAM

Stworzenie klastra obliczeniowego w chmurze
 Połączenie i wspólne zarządzanie wieloma

maszynami c4.* lub r3.*

 Darmowe oprogramowanie StarCluster

192

Tworzenie instancji w chmurze

Amazon AWS

193

Prowadzenie obliczeń i przetwarzania

danych na instancji EC2

194

 Instancja ma wiele rdzeni (do 36 w przypadku

c4.8xlarge) stąd należy utworzyć wiele

równoległych procesów obliczeniowych

 Skrypt powłoki (bash)

 Moduł multiprocessing w Pythonie

 Systemy zarządzania kolejką zdań

 Apache Spark

 Starcluster

 AWS SQS + Autoscaling

Konfiguracja środowiska Anaconda-Python
na przykładzie systemu operacyjnego Ubuntu

195

Instalacja

Narzędzia dla Linuxa...

sudo apt-get update

sudo apt-get install -y awscli htop mc

Python-anaconda

wget https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda3-2.4.1-Linux-x86_64.sh

bash Anaconda3-2.4.1-Linux-x86_64.sh -b

196

wciśnij kilka razy ENTER czytając instrukcje na ekranie - przy

pytaniu o licencję wpisz "yes" i ENTER, w pozostałych

przypadkach zaakceptuj opcje wskazywane przez instalator

Zrównoleglanie obliczeń w bash

Utworzenie skryptu w języku powłoki bash

Dopasowanie kodu

197

#!/bin/bash

for i in `seq 0 3`;

do

nohup anaconda3/bin/python symuluj_ubezp.py $i >

log$i.csv 2>error$i.csv &

done

bash uruchom.sh

uruchom.sh

if __name__ == '__main__':

jobid = int(sys.argv[1])

rd.seed()

runjob(jobid)

symuluj.py

Zrównoleglanie bezpośrednio z

poziomu Pythona

Przetwarzanie wieloprocesowe w kodzie w języku

Python

198

from multiprocessing import Pool

if __name__ == '__main__':

PROCESSES = 3

pool = Pool(processes=PROCESSES)

print("Created a pool of",PROCESSES," processes")

pool.map(run_symulacja, range(20))

pool.terminate()

symuluj.py

Prowadzenie obliczeń symulacyjnych

 Krok pierwszy to zawsze wyodrębnienie kawałka kodu

repprezentującego porcję symulacji

199

def runjob(jobid):

lp = 0

with open('simresults.'+str(jobid)+'.csv', 'w') as csvfile:

writer = csv.writer(csvfile, delimiter='\t', lineterminator="\n")

for s in range(10+jobid*50,10+(jobid+1)*50,5):

print(str(jobid),str(s))

sys.stdout.flush()

for S in range(10,210,5):

for repeat in range(1000):

lp += 1

profit = simulateOneRun(300,s,S)

writer.writerow([lp,repeat,s,S,profit])

csvfile.flush()

symuluj_zapasy.py

Równoległe uruchamianie obliczeń

symulacyjnych z poziomu języka bash

Krok1: dopasowanie kodu w Pythonie

 pobieranie argumentu z wiersza poleceń

 wykorzystanie argumentu do parametryzacji

symulacji

200

if __name__ == '__main__':

jobid = int(sys.argv[1])

runjob(jobid)

symuluj.py

Równoległe uruchamianie obliczeń

symulacyjnych z poziomu języka bash

201

#!/bin/bash

nproc=`nproc`

#zwroc uwage na typ cudzyslowu

logfile="wyniki_$(date '+%Y-%m-%d_%H%M%S').log.txt"

start=$1

end=$((start+5000-1))

kod ponizej powinien byc w jednej linii

nohup seq $start $end | xargs --max-args=1 --max-procs=$nproc

python symulacje.py &>> $logfile &

start_symulacji.sh

bash start_symulacji.sh 0

Krok2: Skorzystaj z gotowego skryptu

Krok3: Uruchom symulacje

Zrównoleglanie bezpośrednio z

poziomu Pythona

Przetwarzanie wieloprocesowe w kodzie w języku

Python

202

from multiprocessing import Pool

if __name__ == '__main__':

PROCESSES = 4

pool = Pool(processes=PROCESSES)

print("Created a pool of",PROCESSES," processes")

pool.map(runjob, range(40))

pool.terminate()

symuluj_zapasy.py

Superkomputer dla BigData w 10 minut?

KissCluster

https://github.com/pszufe/KissCluster

- Szybka konfiguracja węzłów obliczeniowych

- Uruchamia dowolne skrypty bash w tym kod Python

- Po spędzeniu 10 minut na konfigurację każdy kolejny klaster uruchamia się

przez 2 minuty…

Jak to działa
(architektura serverless w kontroli rozproszonych obliczeń)

Analityk

Big Data

Amazon S3

serverless object

(file) storage

Amazon DynamoDB

serverless database

KissCluster

Node – Linux Ubuntu

(e.g. Amazon EC2 spot)

4. Węzeł zaczyna

odpytywać kolejkę

klastra i

przydzielać

kolejne zadania w

ramach kolejki

Struktura danych

cluster node

queue jobs

node executes a script

to register itself in the cluster

… and

executes

jobs

within

the queue

determines the number of jobs

via min_jobid and max_jobid

Podsumowanie

206

Zasady zaliczeń

Projekt grupowy (2-3 osoby)

Stworzyć model symulacyjny w języku Python

rozwiązujący problem biznesowy/analityczny

 dopuszczalne jest rozszerzenie modeli z zajęć

Forma przekazania projektu

 Kod źródłowy modelu

 Raport z wynikami symulacji

5-7 stron

Termin: 31 grudnia 2017

207

Przykładowy układ raportu

1. Strona tytułowa

2. Podsumowanie: (tzw. executive summary)

Wskazanie głównych wyników (również liczbowych) i

wniosków z raportu – propozycji rozwiązania problemu

wraz z krótkim uzasadnieniem. W podsumowaniu

powinno używać się łatwego słownictwa nie

zawierającego żargonu technicznego.

3. Opis organizacji: Podsumowanie rodzaju działalności

organizacji, rodzaj produktów/usług oferowanych

klientom, wielkość organizacji, rodzaj rynku (monopol,

doskonała konkurencja itp.), główni konkurenci.

208

Układ raportu

4. Opis problemu, który ma być analizowany metodą
symulacyjną :

 jaka decyzja jest rozważana?

 jaki jest zbiór decyzji dopuszczalnych (ograniczenie
budżetowe, dostępne zasoby, dostępne opcje)?

 jak są oceniane skutki decyzji (zysk, ryzyko)?

 w jaki sposób zostanie dokonany wybór optymalnej decyzji

 jakie przyjęto założenia/uproszczenia i jakie są
ograniczenia przyjętej analizy?

5. Wyniki analizy : Liczby wraz z ich interpretacją. Czy
rozwiązanie jest akceptowalne? Czy może być wdrożone w
praktyce? Czy wynik jest zgodny z intuicją? .

209

Układ raportu

6. Analiza wrażliwości : zmiana parametrów a rozwiązanie

optymalne (RO)

 czy zmiana parametru (np. wzrost ceny produktu o 5% /

wzrost wynagrodzenia godzinowego) spowoduje zmianę

R.O., czy ciągle ono pozostanie takie samo?

 o ile musi zmienić się parametr (np. cena produktu /

wynagrodzenie pracownika) żeby R.O. uległo zmianie?

 Opcjonalnie meta-model tłumaczący zachowanie modelu

symulacyjnego

7. Wnioski i zalecenia : Jak wyniki analizy symulacyjnej mogą

usprawnić działanie organizacji.

210

Literatura

Python

 http://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial

 https://docs.python.org/2/tutorial/

Teoria symulacji

 Simulation Modeling and Analysis, Fourth Edition

A. M. Law, McGraw-Hill, 2007

 Simulation for the Social Scientist, Gilbert

i Troitzsch, Springer, 2005

211

