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Chapter 1

Introduction

BoGcumit, KAMINSKI
MICHAL JAKUBCZYK
PRZEMYSLAW SZUFEL

Making good decisions requires at least three elements: having iden-
tified the decision alternatives between which the choice is being made,
knowing the consequences of these decision alternatives, and being able to
compare the consequences.

These components are often ignored in real decisions and sometimes
with good outcomes. A person might not consciously consider available
strategies while trying to avoid a car accident but automatically makes an
evasive maneuver. Similarly, someone may not think about the long-term
consequences of risky behavior (e.g., smoking) and does not bear them due
to luck. Finally, an employee may select a job based on an overall holistic
assessment, rather than a point-by-point deliberation of the pros and cons,
and be satisfied in the long run.

Nevertheless, we believe that a conscious deliberation of the above three
elements helps. Trivially, you cannot make a better choice than the best
alternative that is available and that you have identified. Likewise, one may
fail to reject an alternative that may bring a very unfavorable outcome if
they do not think about the possible consequences of their choices. We do
not know which alternatives suits one’s needs best if we do not know which
combination of consequences they like most (e.g., a high quality is coming
for a high price or a moderate quality available for a moderate price).

Obviously, in order to make good choices consistently, it is necessary to
have domain-specific knowledge relevant to the field in which the decision
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is to be made. For example, physicians know the available medical options
(e.g., drugs); they also read publications and learn about possible outcomes,
positive or negative ones. Having gone through similar decisions in the past
and having experienced the consequences of the past options (being satisfied
or dissatisfied) help us to realize what we care for and what trade-offs we
are willing to make.

Besides the domain-specific knowledge, organizing the decision-making
process in a systematized way helps to better understand the available op-
tions and their consequences. For that purpose, decision trees are a partic-
ularly useful tool in our experience. The usefulness of decision trees comes
from the fact that when a decision problem is sequential, i.e., when it entails
several actions following one another (possibly intertwined with uncertain
events that depend on the actions we take), then it may not be easy to
intuitively grasp all the possible strategies that might be quite complex.

Let us illustrate this difficulty with an example. Imagine a patient
who may have a disease that needs to be treated before it manifests with
certainty. There are two diagnostic tests we may use, and each bears
a risk of a false positive or a false negative signal (i.e., may suggest the
presence of the disease in a truly healthy individual or may fail to detect
a truly ill person). The decision to treat or not (to perhaps find out later
the person was ill) the patient can be made based on any combination of
tests. We ignore the parameters of the problem for simplicity, i.e., the prob-
abilities.! The reader may be surprised to find out there are 74 strategies
for how we may approach the patients’ diagnosis and treatment.? Not all of
them make sense (e.g., conducting both tests and then treating the patient
regardless of the results), but otherwise, how can we make the best choice
if we do not represent all the alternatives we have in a structured way?

Structuring the decision problem can help avoid subjectivity in decision-
making and make it easier to focus on the quantitative aspects of decision
outcomes. In Chapter 5, we have presented examples in the domain of pan-
demic management, agriculture, sales, services, and transportation. More-
over, decision trees can also be used to present, suggest and discuss decision
scenarios. For example, this approach is used by law firms to clearly dis-
cuss the decision situation and possible choices, probabilities, and outcomes
of their clients. This approach makes it easier to explain and recommend

! We assume that the same type of test performed twice necessarily gives the identical
result

2 Assuming the two tests cannot be performed simultaneously. We should also sub-
tract 16 strategies that are equivalent, e.g., always performing two tests and then making
a decision based on a combination of results, then the ordering of the tests does not mat-
ter.
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decisions made in a lawsuit. Decision trees are a way to model the sequen-
tial decision problems we consider in the book in a graphical way, such as
graphs (a mathematical concept, more information is given in the book in
Chapter 3). Decision trees make it explicit what the possible paths of events
may occur for a given strategy and with what probability; hence, they al-
low measuring the consequences of available alternatives. The decision trees
have been successfully used for more than half a century [15, 25]. Beyond
the typical business context, the decision trees are also used in health tech-
nology assessment [5, 24, 29|, and this method of problem-solving forms
a part of the standard teaching curriculum and guidelines [10, 12].

The trees representing actual problems (like the one above) may grow
huge, and solving them (to be exact, solving the problem represented by
a given tree) may require many calculations. Therefore, dedicated software
is useful both in the construction and in the solving phase. We believe that
the Silver Decisions software (SilverDecisions, henceforth) possesses all
the features that help the user with the three difficult steps of decision-
making, as described above. The basic functionalities of SilverDecisions
are presented in Section 2.1; for example, SilverDecisions allows building
a tree via a graphical interface; copy-paste makes it easier to represent more
complex problems; variables can be defined and used to increase flexibility.
The outcomes of each policy can be presented graphically (e.g., league table
in multiple criteria problems discussed in Chapter 4). The user can also in-
spect the pessimistic or optimistic outcome for each strategy by considering
various decision-making rules. Moreover, we designed SilverDecisions
software in a way that makes it programmable by using variables and func-
tions in the process of calculating the results. Those outcomes can be later
presented in various labels within a decision tree. Finally, SilverDecisions
enhances inspecting the impact of how the pay-offs are evaluated; for ex-
ample, in multiple criteria problems, the user may define a range of values
measuring the trade-offs between individual criteria to understand the im-
pact of own preferences on the recommended behavior.

SilverDecisions can also help to ask questions beyond the original
problem: how the parameters must change to require re-evaluation (sen-
sitivity analysis, see Chapter 3) or how worthy it is to pursue additional
information (Chapter 4).

An interested reader can find an additional discussion of the mathemat-
ical theory behind the analysis of the sensitivity of decision trees in [18].

Modern data science and quantitative methods offer several other tools
and approaches for supporting a decision process. This includes simulation
modeling (building digital twin models of the phenomena interesting to the
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decision-maker and experimenting with such models for example, see [23]),
mathematical programming optimization (models that are defined as a set
of variables, constraints, and a goal function are solved by tools known as
optimization solvers — for example, see [38]), machine learning (models used
for classification, prediction, and segmentation of the data on the observed
phenomena). Additionally, those various approaches in real-world scenarios
are often combined — for example, an output from a forecast can become
input for a simulation model, and the output from the simulation could
become an input for a decision tree. Interested reader can also see [6, 9] for
a wider context of sequential decisions problems.

The present book is organized into the following chapters:

e Chapter 2 presents a comprehensive introduction to building decision
trees with SilverDecisions.

e Chapter 3 discusses the mathematical foundations of analyzing deci-
sion trees using SilverDecisions.

e Chapter 4 presents more advanced scenarios of working with decision
trees, including real option valuation, multiple criteria analysis, and
including time factor in the analysis of decision trees.

e Chapter 5 presents several case studies that SilverDecisions users
might want to follow to understand how the software can be used in
practice.

The SilverDecisions software can be used for free and without instal-

lation by using a web browser. You can find it at http://silverdecisions.pl/.

Book guide and conventions

In this book, we use different formatting to signal actions that the user
can take

represents a keyboard action

‘B represents a mouse action

‘Label’ represents a text visible in SilverDecisions application

text represents a text entered by a user to SilverDecisions

code represents JavaScript code for programming decision
trees (advanced software functionality discussed in
section 4)

Acknowledgments
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Chapter 2

Fundamentals

PRZEMYSLAW SZUFEL

The goal of this chapter is to provide a quick overview of the key func-
tionalities of SilverDecisions as well as a discussion of more advanced
features related to support for programming decision trees.

We start with an introductory tutorial showing how to implement a sim-
ple decision tree. This includes operations such as adding and removing
nodes and basic decision tree settings (Section 2.1). Subsequently, we move
to an overview of options available in the application menus (Section 2.2).
This includes a thorough overview of tree layout settings, visualization op-
tions, and optimization modes (however, without multi-criteria decision
modeling, which will be discussed later in the book in Section 4.2). Finally,
in Section 2.3 we present decision tree programmability options offered in
the software. We show how to define variables at various decision tree
scopes along with custom functions that can be used subsequently across
the decision tree.

2.1 Building your first tree

We will follow the well-established tradition for software books by start-
ing with a simple yet usable working example.

2.1.1 Software requirements

SilverDecisions is accessible  through a  web page
http://silverdecisions.pl/. The application can be launched inside the web
browser by pressing the Run button on the project’s homepage.
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M O <€ SilverDecisions

A free and open source decision tree software

s

English

Figure 2.1: On the welcome screen, you can select the language version of
the software before running it.

The software can be run! under Windows, Linux, and OS X. The rec-
ommended web browser is Google Chrome - a browser that runs across
all major operating systems and platforms. In this book, for all illustra-
tions, we use SilverDecisions version 1.2 being run on Google Chrome
version 93 on Windows 10 operating system - this is the reference execu-
tion environment for SilverDecisions. The full list of currently supported
web browsers is on the project’s website. Note that software is not fully
supported in non-desktop environments (e.g., mobile phones or tablets).

If you find a bug in our software, you are welcome to submit a new issue
on the web page https://github.com/SilverDecisions/SilverDecisions /issues.
Please note that you might be using a newer software version than the
one described in this book — the up-to-date documentation is available at
https://github.com/SilverDecisions/SilverDecisions /wiki/Documentation.

! Please note that the SilverDecisions may run on tablets and mohile devices, but
the functionality is limited to read-only - tree editing might be not available.
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2.1.2 First steps

In this tutorial, we will create a simple decision tree representing a de-
cision problem of an investor who is deciding to locate her money in one
of two startups. Our investor has only a budget for one investment, and
her goal is to maximize the expected profit (in other words, our investor is
risk-neutral).

To start creating a tree, simply click the right mouse button? anywhere
in the white plotting canvas. The context menu will pop up. Let us choose
the ‘Add Decision Node’ option from the context menu, and the first node
will be added to the canvas — see Figure 2.2.

B OB orcrio PNG SVG  PDF | Lavour MANUAL (RSN  CLUSTER

Layout v
Details v
Add Decision Node
Variables v Add Chance Node
Add Text
Paste

Select all nodes

Figure 2.2: In order to start, “a right-click the white canvas to add a node
to the tree.

Observe that there are red exclamation marks — ‘//” (Figure 2.3) marks
at the top-right side of the decision node. This means that the tree is not
proper (it is not allowed to have a decision node without child nodes). This
can be achieved either by ‘& left-clicking on the decision node again and
pressing &= Ctrl-Alt-C or “& right-clicking on the decision node and selecting
the ‘Add Chance Node’ option from the context menu. In this tutorial, we
add two chance nodes see Figure 2.3.

We add two-terminal node to each chance node. As the result, a tree
that can be seen in Figure 2.5, has been constructed.

2 The context menu may also be opened by & double-clicking anywhere on the canvas
or on a node — in this way, the software can be used on devices without the right mouse
button. Additionally, on mobile devices, a long press can be used instead of ‘& right-
button. For the rest of the book, we will assume that a computer mouse is being used.
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B OB orcrrro PNG SV PDF Lavout MANUAL |RBIESN  CLUSTER

Layout v

Details v I

Add Decision Node

Variables w Add Chance Node A
Add Terminal Node

Copy
Cut

Paste
Delete

As Chance Node

Select subtree

Figure 2.3: Once the decision node is created, ‘& right-click on the decision
node to add a chance node to the tree.

B OB orcrrro PNG SV PDF Lavout MANUAL |RBIESN  CLUSTER

Layout v

Details v $0
Add Decision Node

Variables w Add Chance Node

( Add Terminal Node
$0 Lo

Copy
Cut

Paste
Delete

As Decision Node
As Terminal Node

Select subtree

Flip subtree

Figure 2.4: Once the chance node is created, ‘& right-click on the chance
node to add a terminal node to the tree.
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B OB =rorrro PNG  SVG  PDF | Lavour MANUAL [REESN  CLUSTER

Layout v

50
Details v $0 050 0.50
Variables v 50 1.00

50 ‘
50 1.00

Figure 2.5: The final example tree contains one decision node, two chance
nodes, and four-terminal nodes.

Now terminal nodes can be added to the constructed tree — see Fig-
ure 2.4.

Once we have understood how to add nodes to the tree, the next step
is to learn how to edit the edges. Note that edges are added automatically
where child nodes are being added to a parent node.

Let us start by adding to the decision tree node labels, as well as edges’
labels and payoffs. Firstly, “m left-click on the decision node to define de-
cision labels. In the left panel, where the Decision Node dialog appears,
enter the text Investment decision . Note that you can press Enter
after the word Investment to add a new line to the text.

Now it is time to edit edge labels. Note that the decision node remains
selected. Therefore, in the left panel, we can see the list of all edges coming
from it. We can edit their payoffs and labels. Type the label Startup A

and the payoff -100 in the ‘Fdge #1’ boxes. Then complete the ‘Fdge
#2’ boxes also. Note that we may use Tab to move to the next box.

Similarly now, we type the label Startup B and the payoff -150 in the
Edge #2 boxes.

Note that another option to edit edge labels and payoffs is to ‘& left-
click an edge. The edge then becomes highlighted, and in the left panel,
an Edge dialog appears. The properties of the edge (label and payoff) can
be modified there.
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Layout v
5100
Details v 0 050 0.50
Startup A
Variables v -§100 1.00
30 -§100
.. Investment
Decision Node decision 0 050 0.50
Labe!
Investment
decision P 150
- _ 50 050 ‘ 0.00
Connections StatupB /7
Edge #1 5150 0.00 “__/
Labe! 50 ‘ 180
Startup A P 50 0.50 0.00
Payoff
-100
Edge #2

Labe!
Startup B

Paycff
-150

Figure 2.6: Decision labels can be defined after ‘& left-clicking (selecting)
the decision node (note that the decision node has been marked as
selected).

Please note that the decision tree that has been just created will find
the optimal decision path as soon as all the necessary parameters are set
(the optimal decision is marked with a thicker line).

Let us now define the probabilities. Firstly, & left-click on the top chance
nodes to see its dialog on the left. Right now, you can see a new option
for edges to be changed: probability. Initially, the probability values on the
left panel for any edge coming out of the chance node are by default set to
the # sign. On the other hand, the probability displayed on the diagram
is equal to 0.5. # is the default parameter for specifying probabilities: it is
automatically assigned to each edge originating from the chance node — see
Figure 2.7. Its exact value is calculated in such a way that the probabilities
of all the edges coming from a given chance node sum up to 1. In our
example, two edges are coming from the chance node, so the probability
for each of them is computed to be 0.5. The user can enter their values
into the probability boxes. However, # is the default value for probability
definition. For each decision outcome, we assign a label along with either
probability value or # — seeFigure 2.8.

Note that arithmetic expressions are allowed when specifying probabil-
ities and payoffs. Instead of typing 100 as the payoff for the first ter-
minal node from the top, the expression (0 + 100) may be entered and
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Layout v
— $100
Details v 0 050 0.50
-_— Startup A
Variables v

Investment

Chance Node decision

Label
. 5150
Connections 0 050 0.00
Edge #1 5150 0.00
5150
Label &0
z $0 050 0.00
Payoff
0
Probability
Edge #2
Label
g
Payoff
0
Probability

Figure 2.7: Probabilities can be defined after ‘s left-clicking (selecting) the
chance node. Initially, the probabilities are represented with the # sign
which means undefined probability values are evenly distributed across
all edges — hence the value visible at the edges is 0.5.

Layout v

Details v
— Startup A

Variables v 5100 1.00

Investment

Chance Node decision

Label

Connections

Edgo #1 -5150 0.00
Label
success

Payoff
1200

Probability

Edge #2
Labe!
failure

Payoft
0

Probability
#

Figure 2.8: For each outcome in the chance node we define a label. Special
expressions # can be used to automatically ensure that the probabilities
sum up to 1.
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Layout v

——— e success §1,100
Details v 1,200 0.20 0.20

Startup A

Variables v
— -5100

0.80

5240 failure
30 0.80

suCcess $1,150
$1.300 0.15 0.00

Investment
decision

Chance Node
Label

Connections

Bége &1 5150 0.00 <:%>
Labs! 5280 failure

success

-550

Ed $100 085 0.00

Payoff
1300

Probatility
0.2-0.05

Edge #2
Lae
failure

Payoff
0+100
Probability
#

Figure 2.9: Arithmetic expressions are allowed when specifying
probabilities and payoffs. Similarly, as for the # sign, expressions are
presented in the boxes in the left panel, but computed values are displayed
on the diagram.

0.2-0.05 can be typed instead of 0.15. Similarly, as for the # sign,
expressions are presented in the boxes in the left panel, but computed val-
ues are displayed on the diagram — see Figure 2.9. To check if the value
on the diagram is a number, # sign, or expression, one may select the
proper node/edge and look at the left panel or move the mouse cursor
over the probability /payoff value on the diagram. Additional information
about the probability and payoff format as well as on # parameter can be
found in subsection 2.1.3.

Finally, let us add the tree title. Simply “& left-click on the Details option
in left panel and enter the text My first investment decision model
in the title box. A title of the decision tree appears in the plotting canvas.
Observe that the decision node we have edited has now become deselected,
and its properties dialog has disappeared from the left panel.

The final decision tree is presented in Figure 2.11. Let us now discuss
the numbers that we see. The thick green line recommends the “invest into
‘Startup A’ alternative with the expected pay-off for this decision of $140.
In case of success, the ‘Startup A’ will be worth $1,200. This means that
the net profit is $1,100, and this value is visible on the right-hand side
of the first terminal node. In case of startup failure, its shares are worth
nothing. This means that the net result is $—100, and again, this value
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is visible in the tree. The values for other terminal nodes are calculated
analogously. Each terminal node also has a value of probability 0.2 for
the first terminal node, 0.8 for the second, and zeros for the two other
nodes. This value represents the probability of the decision process ending
at a particular terminal node, assuming that the decision-maker follows the
recommendations in the decision tree. Chance nodes represent uncertainty.
In our example, for each chance node, there is the expected value of income
for that node — $240 for the ‘Startup A’ and $280 for the ‘Startup B’. Making
a decision (here investing in the stock) yields some costs ($100 for the
Startup A and $150 for the Startup B). While selecting the optimal decision,
the costs need to be deducted from the income. Finally, the expected value
of the outcome for each decision can be calculated. The expected profit
from investing in Startup A is 240 — 100 = 140, and then for the Startup
B is 280 — 150 = 130. The software selects the decision with the highest
expected value and highlights it with the green color. Note that it is possible
that several choices can yield the same expected profit — in that case, all
such decisions will be highlighted.

2.1.3 Important notes

When working with probabilities, please bear in mind the following facts:

e Payoffs and probabilities are always displayed on the tree diagram as
numbers representing computed values (e.g., the result of arithmetic
expressions or computed probabilities values for # parameters — both
values are displayed as numbers). On the other hand, arithmetic
expressions or the # sign may either be present in the left panel
when an appropriate node/edge is selected or on the tree diagram
after moving the mouse cursor over the probability /payoff value.

o If there are several branches coming out of a decision node that are
equally good (have the same expected value), all of them will be high-
lighted in green by default as optimal, and all of the edges coming
from this decision node that are on the optimal path will have their
probability set to 1.00.

e in order to see formulas for tree nodes use the ‘raw’ model setting —
seeFigure 2.10.
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General ~

Payoff 1 number format ~
Payoff 2 number format ~
Probability number format «

Node ~

Layout v

Edge w - success
Details v

Diagram title ~

Variables v

Invesiment

League Table Chance Node decision

QOther A Label P
success

1300 02-005

[=]

isable animations Connections

(]
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Force full redraw of edges Labe
success

failure

(]

<
<

5 0+100 #

Hide labels Payoff
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(]

Edge £2
Hide probabities 9°
Labe!

failure

o Payoff

0+100

A @z O

et interpolation Probability
#

(a) Application settings — raw (b) Application settings — raw tree view
tree view

Figure 2.10: Raw tree view enables to see formulas on all tree nodes it
can be switched on and off in the application settings.

2.1.4 Shortcuts for creation of a decision tree

Below we present a list of shortcuts useful when building a decision tree.
For the full list of keyboard shortcuts, see Appendix A.

e create the first node
— & right click on a node and select either ‘Add Chance Node’ or
‘Add Chance Node’ option.
e add a Chance node to a tree
— b right click on a node and select the ‘Add Chance Node’ option
or;
— @ left-click on a node and press == Ctrl-Alt-C
e add a Decision node to a tree
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My first investment decision model

success
$1,200 020

5240 Tailure -5100
0.80

§1,100

0.20
Startup A

-§100 1.00

Invesiment
decision

success $1,150

§1.300 0.15 0.00

StarupB 7N

§150 0.00 ./

52_80 failure -550
§100 085 0.00

Figure 2.11: The decision tree created with the tutorial recommends the
first option with the expected payoff of $140.

— “m right click on a node and select the ‘Add Decision Node’ option
or;
— “a left-click on a node and press &= Ctrl-Alt-D
e add a Terminal node to a tree
— “mright click on a node and select the ‘Add Terminal Node’ option
or;
— “a left-click on a node and press = Ctrl-Alt-T

2.2 SilverDecisions: Tips & Tricks

In this section we present an overview of options available in the appli-
cation menus.

2.2.1 SilverDecisions application settings

When you @ left-click the ‘SETTINGS’ button in the top right corner,
the following options are available (see Figure 2.12). In the General sec-
tion, the font family and size, and the number format locale may be changed
by typing values into the appropriate boxes. Try typing Arial black to
the ‘Font family’ box and 9px to the ‘Font size’ box. Note that the text
on the tree will change. Number format locale requires typing the language
tag to adjust to the desired format. Font weight and font size may be
changed by selecting one of the options from the context menu.

A particularly interesting setting is the number format locale. Depend-
ing on this setting the value and currency will be differently displayed for ex-
ample the value of $1,300.5 ( en locale)) can be displayed as 1300,5 USD

(pl or fr locales)) or 1.300,5 USD (it locale)) or 1.300,5 $ (de
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locale)) or US$ 1.300,5 (pt locale)). The full technical list of possible
locale values is available at https://datatracker.ietf.org/doc/html/rfc5646.

Settings

General A

Font family
sans-serif

Font size

12px
Font weight
normal

Font style
normal

Number format locale
en

Payoff 1 number format

Payoff 2 number format

Probability number format ~

Figure 2.12: Settings screen can be opened by ‘& left-clicking the
appropriate button at the top-right corner.

General ~
General
Payoff 1 number format
Payoff 1 number format A

Style Payoff 2 number format ~
currency v

v Probability number format A
Currency display

Style
symbaol ~
decimal v
Currency
usD Minimum fraction digits
2
Minimum fraction digits
Maximum fraction digits
Maximum fraction digits
Font size
1em
e grouping separators Color
Payoff 2 number format ~
Node ~
(a) Setting for the payoff values can be (b) Setting for the probability values
customized. can be customized.

Figure 2.13: Setting options for payoff and probability.
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Color

Negative color
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Golor
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a) Setting for the nodes can be b) Setting for the edges can be
g g g
customized. customized.

Figure 2.14: Setting options for nodes and edges.

Please note that currency formatting must be configured independently
of the chosen language tag. Moreover, ‘number format locale’ settings refer
only to the text format displayed on the tree graph. In the left panel, a dot .
is the expected decimal separator regardless of the chosen standard locales.

In the following two sections, the Payoff number format and Proba-
bility number format may be adjusted, including number style, fractions
digits, or color — see Figure 2.13a. For payoffs, you can also change the
grouping separators and currency options, including how the currency is
displayed (symbol/code/name). Probability numbers may be displayed as
decimals or percentages in different sizes or colors. Please note that two
payoff configurations are available (‘Payoff 1 number format’ and ‘Payoff
2 number format’). By default, the visible configuration is configuration
1. The other configuration is used when the ‘VIEW’ option in the main
application menu is changed either to ‘Criterion 2’ or ‘Two criteria’. The
multi-criteria decision-making is described in Section 4.2.
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Diagram tile A

League Table A
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bold v 300px
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(a) Setting for the diagram title (b) Setting for the league table
H 113 )
can be customized. along the “other”.

Figure 2.15: Setting options for diagram title and league table.

The following settings are available for the payoffs formatting:
e ‘Style’: currency (default) or decimal can be chosen. Changing

the style to decimal can be used to hide the currency symbol

e ‘Currency display’: currency symbol (default), code, or name can be
chosen. The currency name depends on the ‘locale’ setting discussed
above. For example, for the en locale symbol, code and name will
be displayed as $, USD, and US dollars respectively. For the de
locale, the currency name will be displayed as US-Dollar

e ‘Currency’: a specified currency may be set by typing the currency
code, USD by default (other typical currency codes are e.g.: EUR,
JPY , RUB, PLN ); the display of the currency symbol depends on the
chosen language locale

o ‘Minimum fraction digits’: can be changed by typing the value or
by clicking on the spinner on the right; the value 0 is set by default.
However, if you want to see values of $3.50 instead of $3.5, you might
consider setting this to 2.
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o ‘ Mazimum fraction digits’: can be changed by typing the value or by

clicking on the spinner on the right; 2 by default.

e ‘Use grouping separators’: to remove the thousands of separators, just

uncheck the box
The next group of settings refers to the probability — see Figure 2.13b.
Those options include:

e ‘Style’: decimal (default) or percent can be chosen.

o ‘Minimum fraction digits’: can be changed by typing the value or by

clicking on the spinner on the right;

o ‘ Mazimum fraction digits’: can be changed by typing the value or by

clicking on the spinner on the right; 2 by default.

o ‘Fonl size’: is used to set the size of probability font so those values

can be clearly distinguished from others on the diagram

e ‘Font color’: is used to set the color of probability font so those values

can be clearly distinguished from others on the diagram

The ‘Node’ part enables the setting of different graphical options for
different nodes: decision ones, chance ones, and terminal ones — see Fig-
ure 2.14a. Additionally, unique stroke width and color can also be adjusted
for all the nodes on the optimal path. Payoff value colors are adjusted
separately for positive and negative values and hence are going to change
accordingly depending on the values in the decision tree. Similarly, the
stroke color and width can automatically change for nodes that are located
on the optimal path.

In the ‘Fdge’ section, analogous modifications can be made. The color
of an edge changes dynamically depending on whether it is located on the
optimal path (the default color is green) or not (the default color is black)
— see Figure 2.14b. When editing a tree, an edge can be selected to edit its
properties. Again, an edge changes color also for the time it is selected for
editing.

The ‘Diagram title’ section includes standard font options (size, weight,
style, and color) as well as settings related to margin and subtitle options

see Figure 2.15a. The margin options make it possible to set the distance
between the title and other diagram elements. The subtitle options make
it possible to decide whether the subtitle is visible as well as to set the
standard font options for the subtitle along with the distance between the
title and the subtitle.
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The ‘League Table’ options allow to configure the size (width) and the
colors for the league table. The ‘Other’ options allow you to control how
the tree is repainted (their main use is on system/browser configurations
that have problems with correct handling of JavaScript repaint events) or
disable of presentation of different elements of the tree. These options are
particularly useful when you want to export the tree only with a subset of
elements — it is possible to hide the labels, payoffs, and probabilities — see
Figure 2.15b.

2.2.2 Tree branch folding

Tree folding allows one to navigate through large decision trees more eas-
ily and focus on branches of interest at a particular point in time. Whenever
you right-click any Chance or Decision node, there is an option to Fold that
folds down (hides) the subtree below that node. Once a node is in a folded
state, a plus sign [+] is visible next to the node — see Figure 2.16. Clicking
the [+] sign will unfold the subtree. When a node is in the folded state, no
new child nodes can be added it needs to be unfolded first.

Investment ~ Startup A .

decision 100 1.00

240 success 51.150
51300 0.15 0.00

StarupB /7
-350
5100 0.85 0.00

3150 000 \_ /
5280
Figure 2.16: A partially folded tree — a plus sign |+] is visible in the first
branch. Clicking it will unfold the tree.

5140

B OB s=crorro PN sve  POF

Figure 2.17: Toolbar for saving and loading decision trees.

2.2.3 Optimization modes

The software supports two-criteria decision-making. A common prac-
tical example would be evaluating an expected profit versus risk. In the
‘RULE’ menu options depend on whether a single or multiple-criteria tree
has been selected — see 2.18.
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The following options are available for a single-criteria decision tree
(more information on how decisions in standard decision trees are estimated
can be found in Section 3.1):

e ‘max’ — mazximize the expected pay-off value in the decision tree

e ‘min’ minimize the expected pay-off value in the decision tree

e ‘mazi-min’ — assume the worst-minimal (pessimistic) outcome at each

chance node and select the decision with the highest (mazi) outcome

e ‘mazi-maz’ — assume the best-mazimal (optimistic) outcome at each

chance node and select the decision with the highest (mazi) outcome

e ‘mini-min’ — assume the best-minimal (optimistic) outcome at each

chance node and select the decision with the lowest (mini) outcome

e ‘mini-maz’ assume the worst-mazimal (pessimistic) outcome at each

chance node and select the decision with the lowest (mini) outcome

The following options are available for a multi-criteria decision tree
(Multicriteria optimization is discussed in Section 4.2):

e ‘min-mazx’  minimize the expected pay-off value of the first criteria
and mazimize the pay-off value of the second criteria

e ‘max-min’  mazrimize the expected pay-off value of the first criteria
and minimize the pay-off value of the second criteria

e ‘min-min’  minimize the expected pay-off value of the first criteria
and minimize the pay-off value of the second criteria

e ‘maz-max’ — mazimize the expected pay-off value of the first criteria
and mazimize the pay-off value of the second criteria

2.2.4 Saving and exporting a decision tree

The first toolbar actions (Figure 2.17) correspond to creating a new
diagram (note that this option clears the whole diagram), opening an ex-
isting diagram, or saving the current one. By ‘& left-clicking on ‘Open an
existing diagram’, you can load a previously created tree from your disk.
Note that only those files saved in JSON format may be loaded into the
application. To save your tree, just ‘& left-click on the ‘Sawve current dia-
gram’ — the tree is then automatically saved to disk in JSON format to
a download folder specified in your browser. The tree is saved in tree meta-
data in its layout mode with its layout parameters, so whenever reopened,
we should be able to continue work where we have finished it. Note that
the naming convention for a file with the decision tree is the following:
decisiontree®2021.09.10_14.44.55. json — the first part of the name is
the word decisiontree, followed by the character @, then date, time, and
the . json extension.
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(b) The ‘RULE’ menu in two-criteria view.

Figure 2.18: The ‘RULE’ menu contents change on whether a single or
two optimization criteria have been selected.

Details A
Title
Description

Figure 2.19: Editing labels for the decision tree.

The second toolbar panel (Figure 2.17) enables the export of the dia-
gram representing the decision tree to a file in either PNG, SVG, or PDF
format. SVG is the recommended export format as it guarantees the same
image as seen in the browser and is the fastest way of exporting. PDF ex-
port is performed via an external converter. It is not guaranteed that the
exported diagram looks the same as in the browser: fonts that are not on
the PDF renderer server will be substituted by alternatives in the exported
PDF file. Exporting preserves the selection: if the nodes or edges are se-
lected at the time of exporting the diagram, they will also appear selected
in the exported file.

2.2.5 Tree details

The ‘Tree details’ section makes it possible to set the title and the
description of the decision tree — see Figure 2.19.
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2.2.6 Managing tree edit process

The application supports the standard editing features that we can ex-
pect from any editor. This includes selecting copy-pasting nodes and the
Undo/redo functionality. A set of tree nodes can be selected by ‘& left-
clicking and holding a mouse. It is possible to move the whole tree or
any of its nodes by simply selecting them and moving the mouse cursor.
To copy or paste the nodes, we can use keyboard shortcuts (== ctrl+c,
ctrl4+v) or choose the corresponding options from the “a left-click mouse
context menu. Any selected node gets copied along with all its subsequent
nodes. This means that by copying any parent node, the whole of its sub-
tree gets copied. It is possible to copy and paste multiple disconnected sub-
trees. Any selected nodes or subtrees can be copied to the canvas (as single
nodes/subtrees) or the diagram structure. To paste copied nodes onto the
canvas, just ‘s left-click anywhere on the canvas (nodes become deselected)
and choose the paste option from the ‘& left-click context menu. Please note
that the == ctrl4+v shortcut works only for pasting the nodes/subtrees to
any part of the tree graph. To do this, just select an appropriate node and
i right-click and select ‘Paste’ or press & ctrl4+v. The copied subtree should
be added to this node.

2.2.7 Context menu actions

We can & right-click on nodes, edges, or the white canvas to bring up
the context menu that makes it possible to interact with the tree. Here is
the list of context menu actions when an element is “& right-clicked (we do
not comment on self-explanatory actions):

e White canvas: ‘Add decision node’, ‘Add chance node’, ‘Add text’ —

adds a label detached from the tree, ‘Paste’, ‘Select all nodes’

e Decision node: ‘Add decision node’, ‘Add chance node’,‘Add terminal

node’ — any added nodes will be attached to the current node, ‘Copy’,
‘Cut’, ‘Paste’, ‘Delete’

For the tree flipping, see Section 4.1.

LayouT  MANUAL  EEIziSS CLUSTER

Figure 2.20: Three layout modes are available to manually edit the tree,
the ‘MANUAL’ option should be selected.
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2.2.8 Layout options

There are three layout options on the top toolbar: ‘MANUAL’, ‘“TREE’
(default) and ‘CLUSTER’  see Figure 2.20. By default, the diagram has
a ‘TREFE’ layout. It is recommended to construct and develop the tree in
this layout.

The ‘MANUAL’ layout is preferred when final corrections are made. In
this mode, the user can manually place the nodes. Just “a left-click on any
node, hold the button and move that node. Then, let us try to change the
position of the whole tree. Place the mouse cursor somewhere on the canvas,
s left-click-and-hold-down to select all nodes of the tree. When all nodes of
the tree are selected, the colors of its nodes become darker. Now, just “a left-
click on any node, hold the button and move the tree. Note that we are
allowed to position the nodes and the tree only if the ‘MANUAL’ layout is
selected. ‘TREFE’ and ‘CLUSTER’ are automatic layouts of the tree nodes
aligned to the left or to the right, respectively. By changing the layout
again to ‘TREE’ or ‘CLUSTER’, your decision tree will be automatically
aligned once more. The ‘TREFE’ layout is a standard layout normally used
throughout this book. The ‘CLUSTER’ layout automatically moves all
terminal nodes to the right and thus makes it easier to compare them for
some trees.

Depending on the width of text labels, additional fine-tuning of the
tree layout is often required to get a clear, readable tree. Hence, additional
layout options may be found on the left in the Layout panel see Figure 2.21.
Here we can change the horizontal and vertical margin by simply ‘& left-
clicking on the slider and moving it to the left or right. If we move the
horizontal margin slider to the right, we will see that the left canvas margin
gets wider. Try moving the vertical margin slider to the right see how
the top margin gets wider. Within the layout panel, the node size and
edge slant can also be controlled. By moving the node size slider, you can
scale the nodes, and by moving the edge slant slider, you can control the
maximum slant for plotting the sloping part of the edge. For the ‘TREE’
and ‘CLUSTER’ layout modes, you can also see the tree height and width
settings in the Layout panel on the left.

2.3 Working with variables and functions
In this section, we discuss SilverDecisions’ support for variables and

functions defined within a decision tree. SilverDecisions’ computational
mechanism is based on the math.js library that is available at http://mathjs.
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Figure 2.21: Layout settings in the left application panel.

org/. The math.js library is a very powerful computational tool, and our
goal is two show how it can be used for decision analysis rather than discuss
its full functionality. For a full reference of math.js functionality, you are
advised to see its documentation at http://mathjs.org/docs/.

2.3.1 Working with variables

In SilverDecisions, any payoff or probability field can contain expressions
next to numeric values. Have another look at Figure 2.9 discussed previously
in Section 2.1.

More specifically, payoffs can be any proper single line expression of
maths.js, for example:

exp (a) "2

Probabilities can be entered using the special sign # (as it was noted
earlier # states that probability values should be evenly distributed across
all edges) or any proper single line expression maths.js, example:

random ()

This command will insert a random value between 0 and 1 in the field. This
value will be regenerated each time the tree is recomputed (e.g., by clicking
the ‘C Recompute’ button at the taskbar). We have shown such a sample
tree in Figure 2.22. More information on the available random functions in
SilverDecisions can be found in Appendix A (the software extends the stan-
dard functionality of math.js in this regard). Please note that randomness
can be later used as one of the ways sensitivity analysis, discussed in Section
3.3. However, for now, we ignore the distribution and simply perform only
one computation of tree output.
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Figure 2.22: Different math.js expressions and functions can be contained
within the decision tree.

Moreover, it is possible to define variables along with the functional-
ity of the math.js library. The variable declaration can look like this (see
Figure 2.23):
payoff = 100
cost = 50

# this value will be generated randomly
success_prob = Uniform(0.5, 0.7)

Note that lines starting with # are being treated as comments. This
is different behavior than one observed in a probability field where the #
character is used to denote putting a value that will sum up to one.

Like in any other language, math.js makes it possible to define vectors
and matrices:

v = [1, 2, 3]
a = [1, 2; 3, 4]

The elements of a vector or an array are references similarly to other lan-
guages as, e.g., v[2] or a[2, 1].
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Variable scope:

global

payoff = 100

cost = 50
chance=Uniform{0.5,0.7)

Evaluated variables

payoff =100

cost =50

chance = 0.587364186830797
4 C

Figure 2.23: Editing variables with SilverDecisions.

In general, any expressions allowed by http://mathjs.org/ can be used
as code in SilverDecisions. In particular, functions defined in math.js mod-
ule math are available, but constants are not. It should be noted that
expressions can be used in the following places:

e payoff and probability values

e code blocks (global and defined in chance and decision nodes)

e all text labels in a decision tree via the interpolation mechanism dis-
cussed in Section 2.3.5.

The settings for variable definition are available all time on the left
Variables panel (see Figure 2.23) and contains the following elements:

e ‘Variable scope’ can be other ‘global’” (when the white canvas was
clicked before editing variables) or ‘selected node and subtree’ when
any node has been selected. For a discussion on how variable scoping
works, see Section 2.3.2.

e ‘Code’ — a valid math.js code used to generate variables. The rec-
ommended style is to place a single variable in each line. It is also
possible to use semicolons to separate statements and hence to write
x=1; y=2.

e ‘Fyaluated wvariables’ this contains a list of all variables that were
obtained by evaluating the code

e ‘Open’ dialog button that shows the settings on a new bigger window

e ‘Recalculate’ button that does the recalculation of the entire tree (in-
cluding variable values) and works in the same way that the ‘C Re-
compute’ button in the application taskbar.
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Note that payoff and probability definitions are not allowed to introduce
new variables. Any code (in particular defining variables or functions) is
allowed in code blocks. Code blocks can be edited in the left panel. If no
node is selected, the global code block is edited. If the node is selected, the
code for this node is edited. You can press the Open dialog box (on the
bottom left of the Variables section in the left pane); a Variable definitions
dialog box that allows for simpler work with longer definitions of variables.

Since we know how variables work, let us describe the recalculation
mechanism more precisely now. Recalculation (defined as an evaluation of
all code in code blocks) is triggered when:

e Code block in left pane loses focus and code was changed;

e Variable definitions dialog is closed;

e When the manual Recalculation ‘C Recompuie’ button is pressed
(this button is in the bottom right of the Variables section in the left
pane, in the toolbar, and in the bottom left of the Variable definitions
dialog box).

Figure 2.24 summarizes variable-related functionality by presenting a

screenshot that shows key elements of the interface. Please note that in
the section ‘Variables selected node and sub-tree’, the variable p was not

defined. Actually, it has been defined at the global scope as p = random() ,
and at the scope of the node, it is only available for use. Hence, it is seen
in the list of ‘Fvaluated variables’.

2.3.2 Name scopes

SilverDecisions uses variable scoping, where variable scopes are de-
fined for levels of a decision tree. The variables, defined when no tree node
is selected, are defined as global variables and hence are visible to all nodes
in the tree. At any time, you can deselect nodes (and thus select the global
scope) by simply ‘& left-clicking the white canvas. Variables can also be
defined locally in a particular node, in this case; they are only visible in
a node and its subtree.

In order to fully understand the scoping mechanism, have a look at
Figure 2.25. In the left sub-figure, two global variables have been defined:
x =1 and y = 2. The right sub-figure shows the scope of the chance
node. In the scope of the chance code, the variable x is overridden and
now x = 3. Additionally, a new variable p = 0.7 has been defined. In

the ‘Fuvaluated variables’ section, you can see that x = 3, y = 2 and

p = 0.7 . Those values will be seen at the chance node and its children
(a scope gets inherited from the upper level). They will be not seen however
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Figure 2.24: Editing variables with SilverDecisions. Remember to always
check that the correct variable scope has been selected. Variable scoping is
further discussed in Section 2.3.2.

neither by the decision node nor the upper terminal node. Those nodes will
see the values defined in the global scope thatis x = 1 and y = 2 (unless
they redefine those values in their own scopes).

The variable scoping mechanism determines the way a tree is calculated.
When Recalculate of code is triggered (by pressing the ‘€ Recompute’ but-
ton), global variables and the whole tree are recalculated using depth-first
search order with global scope as a root. Each code block is recalculated
only once.

Expressions in nodes are evaluated in the following order:

1. The scope is initialized as a deep copy of the parent scope;

2. Code evaluation;
3. Evaluation of “numeric expressions” for each child edge (payoff, prob-
ability).
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the selected node and its children, other
nodes will still see the global value of x .

Figure 2.25: Global vs. local variable scopes. If you are not sure which
variable scope to use, choose the global scope.

Steps 1 and 2 are only performed when Recalculate of code is triggered;
step 3 is recalculated every time a tree is changed (that is why it is not
allowed to define variables in payoffs and probabilities).

This process ensures that the value of the variable defined (or redefined)
in some node is visible only in this node and its children. Technically:
variables are visible in the closures defined by subtrees rooted in a given
node. Global scope is the outermost closure.

In particular, consider the following consequence of the redefinition of
variables. Assume that in global scope, we have:

a = 1
b = a

and then in some node we redefine:
a = 2
then the value of b is still 1 as it has been already defined. If b should

dynamically change its value as a change, it should be defined as a function
with a parameter.

2.3.3 Variable types

We have signaled at the beginning of Section 2.3 that the SilverDecisions’
computational mechanism is based on the math.js computational library.
The following data types are supported by math.js (more information on
node.js types is available at mathjs.org/docs/datatypes/, the definitions
here are taken from math.js documentation):
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e Boolean a logical true/false value. Note that, similarly to other
languages, in numeric expressions, true is treated as 1, and false is
treated as 0.

e Number number for fast floating-point arithmetic,

e BigNumber for calculations with arbitrary precision,

e Complex support of complex numbers is powered by the library com-
plex.js,

e Fraction for calculations with fractions,

e Array a regular JavaScript array. A multi-dimensional array can be
created by nesting arrays,

e Matrix a matrix implementation by math.js. A Matrix is an object
wrapped around a regular JavaScript,

e Unit units (kg, cm, m, s, h) can be used to do calculations and perform
conversions,

e String textual data

The default type when working with decision trees is Number. If payoff or
probability evaluates to something else than a number, an error symbolized
by a red !! is shown. If a non-number type is found, SilverDecisions tries to
cast it to a number (e.g., "5.5" is of type string, but SilverDecision will
cast it to a number, and the tree will be properly evaluated).

The Number type offers standard floating-point precision. However, in
some cases, the exact computation value could be preferred. For this sce-
nario consider the Fraction type.

Figure 2.26 presents a theoretical example where numerical accuracy is
an issue in defining an optimal decision in a tree. The expression
(-0.3+0.1)+0.2 evaluates to 2.7755575615628914 x 107 (a number very
close to 0) rather than the actual value of 0 (see Figure 2.26a). This is
a typical problem in numerical computing — numbers being rational in a
10-base system are not rational numbers in the binary system, so round-
ing errors occur. This problem can be mitigated by using the fraction
function to represent full precision in decision trees. In Figure 2.26b, the
previous expression is replaced by

x = (fraction(-3, 10) + fraction(l, 10)) + fraction(2, 10)

and now x correctly evaluates to 0. Finally, note that the application uses
the Fraction type by default when calculating probabilities and payoffs in
a decision tree.
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Figure 2.26: The Fraction data type makes it possible to use full
precision for rational numbers in decision trees.

2.3.4 Functions

We can also define our own functions following the math.js standard.
Please note that functions are evaluated in their lexical scope. Lexical
scoping means that if we have the following global definition:

a =1
£f() = a
and then in some node in the tree we write:

a = 10
£ ()

o
1l

then in that node a=10 but b=1 because when £() is evaluated, it used
the value of a from the scope where it is defined.

Note that it is strongly discouraged to define functions that mutate
(modify) existing variables like £() = a[1] = a[1] + 1  when
a = [1,2] . This way, we could modify variables in payoff, and prob-
ability definitions and the SilverDecisions engine assumes that this does
not happen — see the discussion in Section 2.3.2 on node evaluation order.
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In particular, such actions modify the lexical scope of the f and not in the
scope of the node where f is called (which means that formulas in one part
of the tree might modify calculations in a completely different part of the
tree).

2.3.5 Text interpolation

The text interpolation functionality makes it possible to insert variables
and expressions into various text elements of the decision tree. This func-
tionality is enabled by default for any decision tree. However, it can be
turned off in the ‘Settings’ tab (see Figure 2.10).

This functionality uses a special syntax in the format:

${expr}

where expr can be any valid JavaScript expression.

The string interpolation is supported for the following elements of a de-
cision tree:

e decision tree title
decision tree description
node labels
edge labels
floating texts

Let us start with a simple example presented in Figure 2.27. We can
see that we have a global variable x = 10 and it has been used in a text
label using a special syntax such as:

x is equal to ${x} and x+5 is equal to ${x+5}

As we can see, the text interpolation mechanism supports simple variable
insertion as well as any more complex expression. In fact, any JavaScript
code is accepted. The access to variables is governed by the scoping rules
as discussed in Section 2.3.2.

A typical scenario for presenting labels is to present various informa-
tion regarding the tree states and the current solution. This can be easily
achieved by accessing a set of predefined variables. The values of those vari-
ables change dynamically whenever the tree is recomputed. The variables
are available at nodes and edges of the tree, and their values always depend
on the actual scope.

The following variables are available for the presentation of the tree
state:

e variables at nodes

— childrenPayoff — pay-off values in decision and chance nodes
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— aggregatedPayoff pay-off in terminal nodes
— payoff — alias for childrenPayoff and aggregatedPayoff
— probabilityToEnter probability of entering a particular ter-
minal node
— optimal — true if the node is on the optimal path, false other-
wise
e variables edges
— payoff — pay-off at an edge
— optimal — true if the edge is on the optimal path, false other-
wise
Additionally, there is a special, context-depended variable named this
which can be used to obtain the state of the sub-tree starting at a partic-
ular node or edge. These variables can be used together with JavaScript
functions which we discuss later in this section.

Layout v
Details v
Variables ~
Variable scope:

global

xe10

Evaluated variables

x=10

[} c ixis equal 0 10 and x+5 s equal o 15 &
Floating text

Text

x qual to §{x}

x+5 qual to §{x+5}

Figure 2.27: The text interpolation mechanism can be used to show
variables in decision tree labels.

Now, let us see how those variables can be used. Consider the following
text interpolation:

${optimal 7 "YES" : "NO"}

This code, depending on the scope-specific value of optimal, will display
whether any given node or edge is on the optimal path — for example, see
Figure 2.28.
In order to provide convenient a bridge between the decision tree and
JavaScript functionality, there is a number of helper functions available:
e math(expr) — evaluates a math.js string expression expr
eg: ${math("random(1, 2)")}
e format(value, optionsOrMaxFractionDigits) format number us-
ing JavaScript’s Intl.NumberFormat
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Figure 2.28: The inbuilt variables that can be used for presentation. llere
we are showing whether any node or edge lies on the optimal path each
label is defined by the following JavaScript expression:

${optimal 7 "YES" "NO"} .

e mathFormat(value, options) —format number using math.js format

e payoffFormat(value, index) — format number using payoff format
options from app settings

e probabilityFormat(value) — format a number using probability for-
mat options from app settings

e getPayoff(nodeOrEdge) — returns the payoff at a given node, could
be used as getPayoff (this) at a given node or edge (the same value
is also available simply at the payoff variable)

e printPayoff(nodeOrEdge, index) shows payoff value formatted
along with application’s settings, can be simply used as
printPayoff (this) in node or edge scope

e getProbability(nodeOrEdge) — returns probability for edges or
nodes, can be simply used as getProbability(this) in edge/node
scope

e probabilityToEnter — returns probability for terminal nodes, can be
simply used as probabilityToEnter(this) in terminal nodes
scope

e printProbability(nodeOrEdge) — return probability formatted
along application’s settings

e optimalEdges(node) — returns an array of optimal child edges

e optimalEdge(node, index) — returns optimal child edge at the
given index, or first if the index is not specified
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Figure 2.29: A low-level programmable interface allows the access internal
tree representation via the roots[0] alias.

The above functions enable number formatting capabilities (which are
self-explanatory) and make it convenient to access the JavaScript object
representing the state of the decision tree.

To understand the internal representation of the decision tree, have
a look at: Figure 2.29.

We can see that in the entire application scope, the state of the decision
tree is available as app.data.nodes[0]. This state can be explored using
the JavaScript console at ‘Web Developer Tools’ available in any modern
web browser. For example, at the time of writing this book in Mozilla
Firefox, this functionality can be found in the main menu by clicking ‘More
Tools -> Web Developer Tools -> Console’ similarly in Google Chrome,
the same tool is found under ‘More Tools - > Dewveloper Tools -> Console’.
In the text interpolation mechanism alias for app.data.nodes[0] is simply
roots[0]. However, in some advanced scenarios one might want to use
the app.data.nodes[0] to navigate around the internal data structure as
shown in Figure 2.29.

Together with support functions, we can now read the final payoff out-
come of the tree, such as getPayoff (roots[0]). It is also possible to access
the tree state via navigating through the internal data structure (which is
also possible, but we recommend using the support functions). Both ap-
proaches are presented in the code below:

Payoff of this tree read with helper function
${getPayoff (roots [0])}
Payoff read with low-level interface

${roots [0].computed[’expected-value -maximization?’].
childrenPayoff}
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In this section, we have shown the ${ } interpolation mechanism along
with some simple examples. This interface allows advanced users to increase
the reporting capability of SilverDecisions. However, note that the in-
terpolation functionality is for data presentation only. The user should not
interpolate code that might have side effects on other variables, such as
${z = math("random(1, 2)")}. Code of this kind is not guaranteed to
work, and there is no mechanism for the control of the execution order (the
evaluation order has been discussed in Section 2.3.2).






Chapter 3

Mathematical foundations of
decision trees

BoGcumit. KAMINSKI
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In this chapter, we discuss the mathematical foundations of decision
tree analysis. This treatment serves as a means of formalizing intuitive
definitions given in Chapter 2 and is covered in Section 3.1.

In the following sections, we extend the analysis to situations where
the parameters of the tree (probabilities or payoffs) are uncertain. This
approach follows the observation that the decision-makers are often unsure
about the exact parameters of such trees. This uncertainty can have prob-
abilistic nature (a situation called risk) or non-probabilistic.

Risk-related uncertainty about the parameters of the model is typically
a result of the imprecise measurement of model parameters. For example,
consider a marketing campaign planner who wants to sell a new product to
all current customers of her company. Assume that a pilot campaign was
targeted at 1,000 randomly selected customers, and 5% of them have bought
the product. This value is only an estimate of the probability of buying
a product in a whole population, and this uncertainty can be taken into
account when analyzing decision trees (if you do not have much experience
with performing statistical analysis, please refer to a textbook on this topic,
e.g., [16]).

On the other hand, non-probabilistic uncertainty has two sources. One
of them is {rue uncertainty; for example, a manager wants to assess the
value for which she can sell a unique ancient vase at an auction. She might
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be able to define the range of possible selling prices, but as this is a one-
time event, it would be difficult for her to assign a probability distribution
to this value. The second source is that some parameters can be a decision
that does not influence the structure of the decision tree but nevertheless
influences the payoffs. For instance, it could be a selling price of a good.

Collectively, the analysis of the influence of the change of parameters
in a decision tree is called sensitivity analysis. In Section 3.2 we provide
the mathematical underpinning of probabilistic sensitivity analysis. In Sec-
tion 3.3, we discuss examples of probabilistic and non-probabilistic sensi-
tivity analysis in SilverDecisions.

3.1 Formal model of a decision tree and associated
payoffs

This section aims to provide precise and rigorous mathematical foun-
dations of various concepts and definitions used in SilverDecisions. We
start with a definition of a decision tree before discussing the associated
concept of payoffs.

3.1.1 Decision trees

Let us start with an informal definition of a decision tree that a mathe-
matically rigorous exposition will followed. A decision tree consists of three
types of nodes: decision, chance, and terminal. Nodes are connected by ar-
rows that will be called edges; we will say that the arrow points from source
to destination. In SilverDecisions, by default, decision nodes are pre-
sented as red squares, chance nodes are yellow circles, and terminal nodes
are green triangles. In Figure 3.1, we present an example of a decision tree
in which we have one decision node called A, one chance node called B, and
three-terminal nodes C, D, and E. There are the following rules for how
arrows are drawn:
1. exactly one node is not a destination of any arrow; this node is called
the root node of a tree;

2. apart from the root node of a tree, all other nodes are destinations of
exactly one arrow;

3. terminal nodes cannot be sources of any arrow; decision and chance
nodes have at least one arrow of which they are a source;

4. there is exactly one path from the root node to any other node in the
decision tree.
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Note that, under these conditions, there are no loops in the defined diagram.
Typically, we draw the root node on the leftmost part of the plot, and then
we draw arrows so that they point from left to right.

In Figure 3.1, one can additionally observe blue numbers that are written

below the head of each arrow. These numbers have the following meaning:

1. for arrows having a chance node as their source, the number represents
the probability of choosing that path when leaving a chance node; the
probabilities going out from one chance node must add up to one;

2. for arrows having a decision node as their source, there are two values
allowed: 1 and 0. The value of 1 means that following this arrow is an
optimal decision, and the value of ) means that following this arrow
is not an optimal decision. By default, in SilverDecisions, optimal
paths are additionally highlighted with bold green.

Now, let us formalize these concepts. (To learn more about graph theory,

we direct the reader to e.g., [37] or [20].) A decision tree T consists of nodes
forming set V' that are connected by edges forming a set

EC (Z) = {{u,v}:u,v eV anduyév}.

Each node v € V in a decision tree is associated with the following functions:
1. T'(v): type of a node, which can be decision, chance, or terminal;
2. N(v): name of a node.
Since each node v € V has exactly one of the three values assigned to T'(v),
the set of nodes V is partitioned into three sets: Vg = {v € V : T'(v) =
decision}, V. = {v € V : T(v) = chance}, and V; = {v € V : T(v) =
terminal}; in particular, V = V; UV, U V,.
On the other hand, each edge e € E in a decision tree is associated with
the following functions:
Y (e) € R" is a vector of n payoffs associated with this edge;
v1(e) is a start node of this edge;
va(e) is an end node of this edge;
if vi(e) € V., then p(e) € [0, 1] is the probability of selecting this edge;
if vi(e) € Vy, then d(e) € {0,1} is the decision about selecting this
edge;
6. N(e): name of an edge.

Ol W

Since each edge, e € E is a pair of nodes, one of which is a start node and
the other one is an end node, a decision tree is, in fact, a directed tree.
That is, each edge e is oriented from v (e) to va(e). (Such orientations are
visualized on our figures as arrows). As a result, each node v € V has
associated in- and out-degree (deg™(v) and, respectively, deg®(v)), which
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Figure 3.1: An example of a decision tree T;.

count the number of edges with v as their end node and, respectively, the
number of edges with v as their start node. Formally, for each node v € V,

deg™(v) = ‘{e € E:ve) = v}‘
deg®(v) = ‘{e € E:vi(e) = v}‘

In Figure 3.1, we present a simple decision tree 7;. It has five nodes
forming set V' = {A, B,C, D, E}. Node A is a decision node (represented as
a red square), node B is a chance node (represented as a yellow circle), and
the remaining nodes are terminal nodes (represented as green triangles);
this association defines function T". In our example, function N for nodes is
simply the identity function, that is, N(v) = v. The decision tree 77 has 4
edges forming set E = {{A, B},{A,C},{B,D},{B,E}}. The table below
presents the values of all the functions associated with edges:

function | {4, B} | {A,C} | {B,D} | {B,E}
Y $1 $2 $3 $4
U1 A A B B
V2 B C D E
p - - 0.5 0.5
d 1 0 - -
N Al A2 B1 B2

A well-defined decision tree 7 = (V, E) is a pair consisting of the set
of nodes V' and the set of edges E, together with the associated functions
defined above, that additionally satisfy the following seven properties:

1. there exists a unique node with in-degree equal to 0, that is,

{v eV :deg™(v) =0} = 1;

such a unique node will be called the root of 7 and will be denoted

by r(T);
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2. all nodes but the root have in-degree equal to 1, that is,
Yo e V\{r(T)} deg™(v) = 1;
3. terminal nodes have out-degrees equal to 0, that is,
Vv € V; deg”(v) = 0;

4. there exists a unique path from the root to any of the other nodes,
that is,

Vo e V\A{r(T)} I(vo,v1,...,vx) : wvo=r(T),vx =v, and
Vi € {1, c. ,k‘} {vi,l,vi} e FE;

5. decision and chance nodes have non-zero out-degrees, that is,
Yo € VaU V. deg®™(v) > 1;

6. probabilities of selecting edges going out from any chance node add
up to one, that is,

Vv eV, Z ple) =1;
e€E:wy(e)=v

7. decisions of selecting edges going out from any decision node add up
to one, that is,
Yo e Vg Z d(e) =1,

ecE:wi(e)=v

in other words, precisely one of the edges going out of any decision
node is selected.

It is easy to verify that the tree 77, presented in Figure 3.1, satisfies all
the required properties. In particular, its root is 7(7;1) = A. For the only
decision node, node A, precisely one value of function d is equal to 1. For
the only chance node, node B, the probabilities sum up to 1 = 0.5 + 0.5.

As was already mentioned in Chapter 2, SilverDecisions simplifies the
process of assigning probabilities to chance nodes so that they add up to
one. This is achieved by using the # sign. Suppose that v € V is a chance
node of out-degree k and edges E1, Fs, ..., Ey are going out of v. For any
index i € {1,...,k}, the probability p(E;) assigned to edge E; defined in
SilverDecisions is either a numerical value from the interval [0, 1], or it
remains undefined, that is, the # sign is put in SilverDecisions interface.
Let us denote by I the set of indices corresponding to probabilities with
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the # value and the remaining indices from set I, = {1,...,k} \I# First,
note that for the decision tree to be well defined, it must be the case that
Sy = Zz‘elv p(E;) < 1, that is, the already assigned probabilities cannot
sum to the value greater than one. Then, for all i € I we define p(E;) =
(1 —S,)/|I¥|. By doing this, we ensure that all probabilities add up to 1
and are non-negative. Moreover, all edges with a # sign assigned to them
have the same probability.

In this formal description, we assumed that payoffs (V) and probabilities
(p) take arbitrary but concrete values. However, in SilverDecisions they
may depend on values of some other defined variables, as was explained in
Chapter 2. This feature is especially useful for performing sensitivity anal-
ysis as it allows decision-makers to quantify the uncertainty about payoffs
and probabilities using variables. This topic will be discussed in detail in
Section 3.3.

3.1.2 Payoffs

So far, we have defined what a proper decision tree is. However, a crucial
element, of modeling using decision trees is the calculation of payoffs for a
given decision tree and the process of selecting optimal decisions. We will
now explain how those two features are implemented in SilverDecisions.

Let D be the family of all functions d associated with edges going out
of decision nodes. Since there are deg®(v) options to choose from in each
decision node v € Vy, the number of possible decisions that can be made is
equal to

D] = T deg™(v).

veVy

Having said that, note that by making a decision for a given decision node,
we select exactly one branch, and the remaining branches are not going to
be reachable. As a result, values of function d on nodes present in those
unreachable branches will be negligible. Formally, one may define an equiv-
alence relation between functions from D that differ only on nodes present
in unreachable branches and consider one member from each equivalence
class. For simplicity, we will use the whole family D in further discussion.

Our ultimate goal will be to find a function d € D that is optimal from
some point of view. But for now, we will concentrate on computing various
evaluation criteria for a given function d € D.

We assume that the manager-making decisions may select any function
d € D that reflects her strategy for handling the decision nodes. However,
she cannot affect random events modeled by the chance nodes. We assume
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that each chance node v € V¢, with edges Ey, Ea, ..., Ejgout(,) going out of
v, selects one of these edges randomly; edge E; is selected with probability
p(E;). The events associated with different chance nodes are independent of
each other. (If, in the original decision problem, the evens associated with
different chance nodes are not independent, then one must restructure the
tree to ensure that this property holds. Note that this is always possible
and easy to do, but this operation increases the size of a decision tree.)
The manager does not know the outcomes of these random experiments,
and she needs to make a decision based only on the decision tree T before
these experiments are performed. (In fact, some random experiments might
never get executed as they might fall in the decision tree branch that the
manager does not select.)

For a given function d € D, after the outcome of random experiments ex-
plained above is made available, there is a unique path P = (vg, v1,...,vg)
from the root r(7) to one of the terminal nodes. Path P follows the deci-
sions made for decision nodes and the outcome of random experiments for
chance nodes. Let Xy be the random variable equal to the payoff incurred
by the random path P, that is,

k

Xa(T) =YY ({vi-1,v}),

=1

where k also is a random variable that depends on the realization of P.
(Note that decision trees are typically not symmetric; in particular, terminal
nodes might have different distances from the root.)

Note that the assumption made in SilverDecisions is that the payoff
assigned to a given path P is a sum of the payoffs along with it. However, in
practice, one can encounter other aggregation schemes such as discounting
of payoffs. In such situations, the user of SilverDecisions is responsible
for designing a tree in such a way so that the payoffs along the path can be
aggregated with addition when evaluating it.

SilverDecisions supports three modes for calculation of the payoff for
a given decision tree T, assuming that specific decisions in the tree are
already made (again, such decisions are captured by a given function d),
but the uncertainty in chance nodes is not realized yet. For simplicity, in the
definitions below, we assume that Y has a single dimension; that is, only
one criterion for evaluation is used. We will discuss the multiple-criteria
problem later. The three modes are:

1. expected payoff Pp(T,d), that is, Pg(T,d) := E[X4];

2. chance-max payoff Ppax(7T,d), that is, Ppax(7,d) is the smallest

My € R such that deterministically Xy < My;
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3. chance-min payoff Py, (7, d), that is, Pyin (7T, d) is the largest mg € R
such that deterministically Xy > my.

The expected payoff Pr(T,d) is the most natural approach as it gives us
a piece of information about what is a typical outcome of the decision
associated with the function d. The chance-max payoff Ppax(7T,d) and the
chance-min payoff P, (7, d) tell us the best and, respectively, the worst-
case scenarios that are typically substantially far away from each other.

Finally, depending on the application at hand, we might want to select
a specific decision function d to maximize or minimize one of the three
measures of the quality of decisions. In total, we have six options for an
optimization approach, and all of them are available in SilverDecisions
software:

1. expectation maximization; with optimal payoff
PR*(T) := maxqep Pp(T, d);

2. expectation minimization; with optimal payoff

PBR(T) := mingep Pg(T,d);
3. maxi-min; with optimal payoff P*(T) := maxjep Puin(7T, d);
4. mini-min; with optimal payoff P (T) := mingep Puin(T, d);
5. maxi-max; with optimal payoff P2*(T) := maxgep Puax (T, d);
6. mini-max; with optimal payoff Pl (T") := mingep Puax(7T, d).

Since |D| can be large and for a given d € D the number of associated
random events that affect payoff X; can be significant, let us now discuss
how the above-defined payoffs are efficiently computed in SilverDecisions
software.

For a given decision tree T and a given decision function d € D, one
may simply consider all random paths P that can be created during the
random experiments associated with the chance nodes, and use them to
compute the desired payoff. Note that every path P terminates at some
terminal node. Moreover, for any terminal node v € V;, there is a unique
path P, = (vg,v1,...,v;) from the root vg = r(T) to vy = v. Let q(v) be
the probability of obtaining path P, during the experiment, and let Y (v)
be the payoff associated with path P,, that is, Y (v) = Zle Y ({vi—1,vi})
sum.

Of course, a given function d might prevent P, from being generated
during the random process. If this is the case, then we fix g(v) = 0. The
remaining terminal nodes are put into Vi(d) C V4, indicating that these
nodes are reachable for this particular function d. We may easily compute
q(v) for such nodes by multiplying the probabilities of selecting edges from
chance nodes on the path P, (since the experiments associated with chance
nodes are independent). Note that it might be the case that ¢(v) = 0 for
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some reachable nodes in Vi(d) but, typically, this is not the case. On the
other hand, by definition, ¢(v) = 0 for all v € V;(d). It follows that

Pp(T,d) = E[Xg=) q@)Y@)= > q()Y()

Ve Lt ve ‘/t(d)
max 9
ijn ; 5 d — d — “li n 5 .

Fortunately, there is no need to investigate all possible paths to compute
these values. One can do it much more efficiently by applying some simple
recursive formulas. Before we do that, we need one additional definition.
For an appropriately given defined decision tree 7 and any node v € V,
we define a sub-tree selection operator 7 (v), which selects a sub-tree of the
original tree 7T that is rooted in v. Obviously, for any v € V we have that
T (v) is a properly defined decision tree and, in particular, T = T (r(T)).

With this definition at hand, we can recursively compute the payoffs of
an adequately defined decision sub-trees, finishing with the original tree T.
The three options differ in how one aggregate in chance nodes the payoffs
corresponding to various sub-trees. In the expected value case, one needs
to calculate the weighted mean of payoffs of sub-trees attached to every
edge. The chance-max payoff aggregation chooses the maximum payoff from
payoffs in the sub-trees. Similarly, the chance-min aggregation chooses the
minimum payoff.

The expected payoff Pg(7) can be calculated the following way:

0 itr(T) eV,
d(e) (y(e) + Pe(T (v2(e)),d)) it r(T) € Va

Pg(T,d) = e€E:wi(e)=r(T)
p(e) (y(e) + Pu(T(va(e)),d)) i r(T) € Ve

e€E:wvy(e)=r(T)

Similarly,

0 if r(T) € Vi

P (T ) = Yo de) (y(e) + Puax(T(va(e)).d)) if v(T) € Vy

ecEwi(e)=r(T)

EGE:UI?(%:T(T) (y(e) + Pmax(T(UQ(e)), d)) if r(’]') eV,
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and

0 if r(T) € V;
Y d(e) (y(e) + Puin(T (vale)),d)) if r(T) € Va
ecE:wy(e)=r(T)

eEE:vrlr(lgl:r(T) (y(e) + PIInn(T(UQ(B))’ d)) if T‘('T) eV..

Pmin(Ta d) =

The above formulas assume that decisions captured by function d have
already been made in the decision tree. Below, we describe how optimal
function d is found by SilverDecisions in any of the six optimization
criteria explained above. For example, to compute the optimal payoffs
PRax(T) and Pp®*(T), we apply the following recursive formulas:

0 if r(7) e W

max (y(e) + PE™(T (v2(e)))) if 7(T) € Va

Y. p(e) (yle) + PE™(T(va(e) if r(T) € Ve,

e€E:wvy(e)=r(T)

PRaX(T) = { eep:

and

0 it r(T)eV;
) Pmin if
Py = Loep o (O PEU(T(e)) (T € Vi

S ple) (yle) + PE™(T(vale))) if #(T) € Ve
ecE:wy(e)=r(T)

These formulas yield the optimum payoffs, but, at the same time, the mini-
mum or the maximum operator applied to decision nodes provides us with
an optimal decision, namely, function d. The remaining four optimum pay-
offs and their corresponding optimal decisions may be computed analo-
gously.

Let us briefly comment on the time complexity of the proposed solu-
tion. Recall that a naive way to find the optimal decision would require
investigating |D| = [y, deg®*(v) options. On the other hand, using the
proposed recursive formulas, the computational complexity of finding an
optimal solution is much smaller, namely, in the order of }_ . deg®*(v).

It is easy to see that several different functions d from D may lead
to the same optimum payoff; see, for example, the decision tree presented
in Figure 3.2. SilverDecisions considers such a possibility, and if this
is the case, then all optimal paths are highlighted; see, again, Figure 3.2.
We can observe that decisions Al and A2 give the same expected payoff.
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B1 $4
: 0.50

A1
A $1 1.00 E
$3.5 §5
c $4 050 0.50
$4.5 A2 ‘ $4.5

$4.5 1.00 1.00

Figure 3.2: A decision tree in which both branches give the same payoff.
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Figure 3.3: A view of a tree with three criteria in raw mode.

Therefore, they are both highlighted in green. On the other hand, for the
decision tree presented in Figure 3.1, only decision Al was optimal under
the maximization criterion. It should, however, be stressed that if such a
situation is encountered, then it does mot means that both decisions are
chosen. This would violate rule 7 of proper decision trees described above
that in decision nodes, only one decision can be chosen. If two (or more)
paths are highlighted in SilverDecisions, then this implies that the payoff
of every highlighted path is equivalent and yields the optimal payoff. In
practice, the decision-maker will have t choose one of them eventually.

If a user needs to deal with a multiple-criteria problem, then it can be
easily handled in SilverDecisions by using criteria weightings. Indeed,
suppose that the problem involves n criteria. Then, one can define a vector
variable w=[wl,w2,...,wn] in the global scope in SilverDecisions (as
explained in Chapter 2); values wi, w2, ..., wn should be concrete numerical
values but here we use symbols for the generality of the notation. Next, in
every edge where the payoff is defined, one can calculate payoff using the
formula w[1]*cl+w[2]*c2+...+w[nl*cn, where c1, c2, ..., cn are again
some concrete numerical values.
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Layout v
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Figure 3.4: A view of a tree with three criteria in normal mode.

We show how this can be done in SilverDecisions in Figures 3.3
and 3.4. The first plot is presented in the raw mode (described in Chap-
ter 2) and shows what exactly formulas should look like. The second plot
presents the result of the computation.

The benefit of this approach is that one can easily change the weights
of the criteria in one place (global variable scope) and immediately see
the impact of the new weights on the payoffs and optimality of decisions.
The above process is still somewhat cumbersome, especially for large trees
and multi-criteria problems. In practice, however, two-criteria problems are
encountered very often, and there are some standard methods to analyze
them. In Section 4.2 we will get back to this topic and describe specialized
functionalities of SilverDecisions for handling such two-criteria decision
problems.

3.2 Introduction to Monte Carlo simulation

Before we move to sensitivity analysis and describe various features pro-
vided by SilverDecisions, we summarize some standard results from the
theory of Monte Carlo simulation. (A reader interested in a more detailed
exposition of Monte Carlo simulation tools techniques can find their expo-
sition in, e.g., [22] or [33].) The results presented in this section provide us
with theoretical foundations of probabilistic sensitivity analysis. In particu-
lar, the bounds introduced can be used to assess the precision of the results
of the simulation performed and reported by SilverDecisions.

Monte Carlo experiments belong to a broad family of computational
algorithms and techniques that rely on repeated random sampling to obtain
numerical results. Monte Carlo methods, in principle, may be used to solve
any problem having a probabilistic interpretation. In our application, we use
them to model various phenomena with significant uncertainty in inputs,
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such as the calculation of risk assessment associated with the process of
making decisions.

3.2.1 Example decision tree

In this section, and the next one, we use the following example of a
decision tree. On the one hand, it is easy to describe and interpret, but,
on the other hand, it is complex enough to create a few issues that require
simulation.

The decision problem we want to analyze is aimed at defining an op-
timal policy for charity aid organizations (see Figure 3.7). Assume the
organization has a fixed capital amount of money to spend per one sub-
ject. The organization can either decide not to give help, in which case
it keeps the money and may use it for other purposes. Alternatively, it
can give the money to the subject. The subject might need help, in which
case the organization gains return_good return (which is positive), or in
other words, it assesses its benefit as capital * (1 + return_good). It
is also possible that the subject does not need help. In this case, the or-
ganization has a negative return_bad return and gets a capital * (1 +
return_bad) benefit. (In the example, we assume that all outcomes are
measured in monetary terms; of course, in practice, these returns should
be considered to be monetary equivalents of the utility of the charity aid
organization gains associated with various actions.)

As an optional action, the organization can spend a screening amount
to do an additional investigation if the subject needs help or not. The
screening result can be positive or negative, affecting the probability that
the subject requires support. Assume that p_pos is the probability of a
positive screening result. If the screening is positive, then the probability
that the subject indeed requires help is p_pos_good. If it is negative, then
this probability is p_neg_good instead. Note that these probabilities imply
that, without screening, the probability that the subject requires help is
equal to:

p_pos * p_pos_good + (1 - p_pos) * p_neg_good.

Additionally, we assume that after making a decision on the policy on
how the subjects should be screened, the organization will apply this policy
to many subjects it considers helping. This specification allows us to de-
scribe the decision problem using the tree presented in Figure 3.5 (in raw
mode). If you do not remember how to switch raw mode on and off, you
can see it in Figure 3.6.
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Layout v Charity aid model
R A charity organization can give aid to the needing subjects.
Details v Some of them need help while other do not need it.
Before deciding to provide help to an individual the organization can perfor
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Figure 3.5: Charity model (in SilverDecisions raw mode).
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Figure 3.6: Turning on/off the raw mode.
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Figure 3.7: Charity model: optimal path for reference parameterization.

In Figure 3.7, we present the initial parameterization of our model (raw
mode is disabled). We keep all the parameters of the model as variables,
and you can see their values in the left pane in the Variables section. It
can be observed that for the reference parameterization, the optimal policy
is to perform screening. In this case, if screening is positive, we give aid,
while if it is negative, we do not give it and instead spend money on other
activities.

In the sensitivity analysis, we aim is to analyze how sensitive the optimal
policy we have found is to changes in the parameters of our model. Before
we move to theoretical analyses, let us comment on the general problem
setting we consider here. We assume that the decision-maker is uncertain
about the parameters of the model. However, the policy, once chosen, is
applied many times. In all the examples considered, we assume that the
decision-maker is interested in the maximization of the expected value of
the benefit. The problem the decision-maker typically faces is that the pa-
rameterization of the associated decision tree is uncertain. For instance, in
our example scenario the probabilities p_pos, p_pos_good, and p_neg_good
can most likely only be assessed with a limited degree of precision. There-
fore, it is natural to ask how sensitive the optimal decision is to the changes
in the values of uncertain parameters. Clearly, the most desired scenario



64 CHAPTER 3. MATHEMATICAL FOUNDATIONS OF ...

is when the decision-maker would be able to conclude that the optimal de-
cision remains the same even if the parameters of the decision tree were
slightly changed. This is exactly the objective of sensitivity analysis in
SilverDecisions.

This framework and the problem structure are suitable and natural for
our example problem: the charity organization provides help to many po-
tential subjects. However, this flexible and general framework is applicable
to many other situations. For example, assume that we developed some
drug, and we obtained an initial assessment of its efficiency based on the
results of some clinical trials. Using this information, our goal is to devise
optimal treatment plans for patients, potentially conditional on the results
of diagnostic tests. However, while making this decision, we know that
our assessment of the effect of the drug is uncertain, so the decision-maker
would like to know if the optimal decision might be affected if the actual
efficiency of the drug is not exactly the one as observed in the clinical trial
but probably not too far from it.

3.2.2 Theoretical foundations of probabilistic sensitivity
analysis

Let X be any random variable, and assume that we can sample from
it; that is, the computer can generate a value x from the domain of X in
such a way that the probability of generating x is in accordance with p(x)
the probability distribution function associated with X. (Readers that do
not have much experience with probability theory can find its introductory
exposition in, e.g., [8] and comprehensive treatment in [32].) In our analysis,
X is typically a parameter of a decision tree. We also assume that P is some
transformation of this parameter. This is usually the payoff associated with
a tree under a given decision in our decision trees. We assume that P is
a deterministic function, but P(X) is a random variable. Technically, in
SilverDecisions, parameters that can serve the purpose of X discussed
here are variables defined in global scope; see Chapter 2 for a discussion of
various ways to define variables in SilverDecisions.

In Monte Carlo simulation, we draw n independent samples from X,
where n is a sufficiently large natural number. Let us denote the ran-
dom variables representing the results of transformations of the indepen-
dent draws by Py, P»,..., P,. Furthermore, we assume that the expected
value and variance of P(X) exist and are finite. To simplify the notation,
let us denote F(P(X)) = p and D?(P(X)) = o2. Note that the assumption
of the existence of these two values holds in most typical situations when
decision trees are used to model decision problems. In particular, if one
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knows that the payoff from a decision tree is bounded from above and from
below by some constants, then both the expected value and the variance
of P(X) are guaranteed to exist. (We do not consider non-standard ran-
dom variables without this desired property as they are not supported in
SilverDecisions.)

Let us define P = %2?213 This random variable represents the
average value of n independent random variables F;. It is easy to see that

E(P) = p,
and
2(p o?
D = —.
(P)="

A trivial but quite important consequence of those formulas is twofold. First
of all, since the expected value of this average is equal to p, this random
variable is not biased. Second, if one increases the sample size (the value of
n), then the precision of the estimate increases. For instance, increasing the
sample size four times decreases the variance of P two times. Additionally,
note that the variance tends to zero as n — oo. This last observation can
be described in a much more precise and informative way by the following
laws that work under the assumptions given above:
1. Weak law of large numbers:

V5>O:nh_>n;oPr(}P—u‘ >5) = 0.
2. Strong law of large numbers:

Pr(lim ]5:,u>:1.

n—oo

3. Central limit theorem:

lim sup }Pr (Vn(P—p) <z) - @(z/o)‘ =0,

n—oo 2cR

where ®(-) is the cumulative distribution function of the standard
normal random variable, that is, ®(z) = [*__ f(z), where

_ exp(—2?/2)
f(z) = Tor

4. Law of iterated logarithm:

P—p
Pr( 1i — =2 =1
' < 1Trlri>8£p ov/nloglogn >
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Those four important laws can be collectively, but informally, summa-
rized as follows: if n is sufficiently large, then P is near p, its distribution
is approximately normal, and deviations of P from p almost surely are not
larger than ov/2nloglogn. However, in practice, one does not have the
situation in which n — oo, that is, one cannot look at the infinite sequence
of random samples. Fortunately, several inequalities allow us to calculate
the risk of high deviations from the mean for a given value of n.

The first inequality from this family that can be used for any value of
n is Chebyshev’s inequality. Using this inequality, one can estimate the
probability of deviation of P from p using the following formula:

_ 1
Pr (|P — p| > ko) < pYRE
Additionally, if P(X) has a finite third moment (which is also often the case;
in particular, if P(X) is bounded, then it exists given the same assumptions
we made for the expected value and the variance above), then Berry-FEsseen
theorem can be used that can be viewed as an extension of the Central
Limit Theorem to finite samples:

5 E|P(X) — p®
sup Pr (vV(P — p) < 2) — ®(z/0)| < EN R

Before we move forward, let us make a few observations. In the above
formulas, the mean () and the standard deviation (o) of the distribution
of the P(X); variable is often used. In the context of sensitivity analysis,
it is often challenging to determine them precisely, as they will typically
depend on the values of the parameters that are changing in the sensitivity
analysis. However, it is usually simple to determine some lower and upper
bounds for P(X). For instance, in our example decision tree depicted in
Figure 3.7, assuming that one may only change probabilities in sensitivity
analysis but keep payoffs fixed, the maximum possible payoff is 120, and
the minimum payoff is 72; both can be seen in the payoffs presented in the
corresponding terminal nodes.

Let us denote by P, the lower bound for the random variable P(X) and
by P, its upper bound. Once some explicit values of Py and P, are available,
then one can use several additional inequalities. First, let us provide the
formula for the Chernoff bound: for any § > 0,

- 2872
Pr(P>(1+0)u) < e @uro?

52,2

Pr(P<(1-6)u) < e PP
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The above inequalities bound the probability of percentage deviations from
the mean. If one is interested in the assessment of absolute deviations, then
the following observation can be used. From Popoviciou’s inequality we
know that:

0<o<(P,— Fp)/2.

The lower bound is achieved if the whole probability is concentrated in one
point, and the upper bound is achieved when half of the probability is con-
centrated at each of the two bounds of the distribution. After substituting
these bounds for the Chebyshev’s inequality, we get that for any 6 > 0,

Pr<|u—P\<P;_\/§> >1-4.

Alternatively, if n is large enough (typically, n > 1,000 is enough), we can
assume that the distribution of P is approximately normal by the Central
Limit Theorem and Berry-Esseen theorem. Therefore, we can say that
approximately

_ 1 P,—F
Pr (2(|P p) < @11 —6/2) NG ) >1—4.

Let us start with a simple example. Consider a decision tree given in
Figure 3.8 (the plot is made in the raw mode). It has only one parameter,
namely, p. We know that p € [0, 1], thus the expected payoff of the tree
is bounded to the interval [1,2]. Suppose that we can sample from some
probability distribution p and want to find some bounds of the probability
that the average value of 1,000 independent samples lies within +10% of
the true mean (Note that we do not need to specify this distribution!). We
can calculate it using the above Chernoff bound, where we have § = 0.1,
n = 1,000, and P, — P, = 1 to get that this probability is at least

1 — exp(—20p%) — exp(—1042).

Using again the fact that the payoff is bounded to the interval [1, 2], we can
be sure that |u| > 1, so the probability can be further bounded as follows:

1 — exp(—20p2) — exp(—1042) > 1 — exp(—20) — exp(—10) > 0.9999.

We can conclude that running n = 1,000 samples is enough to get an as-
sessment of the mean that will be within the +10% range of the true mean
with the probability of at least 99.99%.

Now, let us switch back to the example model presented in Figure 3.7.
For example, when one decides not to do the screening and give aid, the
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Figure 3.8: A view of a simple decision tree with only one parameter p (in
SilverDecisions raw mode).

payoff is guaranteed to fall within [75,120]. To find the number of samples
that guarantee that the obtained mean P will be within +1% of the true
value of p with at least 0.99 probability, one can use Chernoff bound. To
do that, we need to solve the following equation for n, where we know that
the mean is not less than 75:

exp(—2n-0.012 - 752 /(120 — 75)%) 4+ exp(—n - 0.01% - 752 /(120 — 75)%) < 0.01

It can be checked that this inequality is satisfied for n > 16,615.

On the other hand, if one is interested in an absolute deviation instead of
a percentage deviation, we can use, for example, Chebyshev’s inequality. In
our example, the upper bound for o is (120 —75)/2 = 22.5. Then, assuming
this bound, our goal is to find an assessment within +1 unit from the mean
with a probability of at least 0.99. We get that k = 1/0 = 1/22.5 and thus
n = (22.52/0.01) = 50,625. Finally, if we use the normal approximation
for the same parameters, then we get that ®~1(0.01/2) = 2.576, and so
n = 2.576%(120 — 75)? /3 = 3360.

Note that we got various values of n as some of these bounds are stronger
than others, but the winner might depend on a particular scenario consid-
ered. Indeed, all these bounds provide an upper bound for the probability,
not an exact value. So, the values of n we obtained above guarantee that
the probability is within the desired range, but perhaps it is also true for
smaller values of n. There are some lower bounds for the probability that
the random variable deviates from its expectation which, in turn, give us
lower bounds for n, but here, we concentrate on sufficient conditions with-
out investigating how optimal they are. In practice, because Chebyshev’s
and Chernoff’s bounds are overly conservative, it is usually enough to use
the normal approximation bound.

Finally, let us comment that computations performed using a computer
have bounded precision. Therefore, despite the fact that the above bounds
imply that, theoretically, one can get an arbitrarily good approximation by
increasing the value of n; usually, one should not expect to get a relative
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precision of computations greater than 10~%. Indeed, in practice, the num-
bers of samples that would lead to such a precision level are unreachable as
the value of n would have to be proportional to the square of the inverse of
this number, too large for a simulation to finish in a reasonable time.

3.2.3 Estimation of statistical parameters

The discussion in the previous sub-section concerned the analysis before
the Monte Carlo experiment was performed. It is necessary to assess how
many independent simulation runs (that is, the value of n) are needed to get
the desired accuracy of the results. In this section, we turn out attention
to the analysis after the experiment results are already collected.

Assume that we have a finite sample of size n from the simulation of
P(X) and that observations are independent (exactly such sampling is per-
formed by SilverDecisions). Additionally, similarly to in the previous
sub-section, in what follows, we will silently assume that the expected value
and the variance of P(X) exit. Denote this sample by pi, pa2, ..., pn-

To assess the statistical parameter of interest, one can take one of the two
following approaches: point estimation and confidence interval calculation.
Point estimation aims to provide a single number that is the best guess of the
true but unknown statistical parameter. On the other hand, the confidence
interval is specified by a construction procedure returning two numbers.
The confidence level of the confidence interval construction procedure is
the proportion of obtained confidence intervals that contain the true value
of unknown but fixed statistical parameters. Typically. 90%, 95% and 99%
confidence intervals are constructed. (See [16] for an introduction to the
theory of statistics.)

The formulas of the most popular point estimators are:

1. expected value: p=>"" | pi/n;

2. median: median of sample p;;

3. variance: s2 = Y."" | (p; —P)*/(n —1).

Procedures for creating confidence intervals are more complex. One simple
rule exists for confidence intervals of mean for relatively large values of n.
This rule is safe to apply when n > 1,000 as a rule of thumb, and such a
number of replications can be easily performed in SilverDecisions. We
choose the confidence level of the interval and select z* equal to 1.645 for a
90% confidence interval, 1.96 for a 95% confidence interval, and 2.576 for a
99% confidence interval. Then, the confidence interval is given by:

52 52
P2\ p+ N
n n
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Finally, let us mention a general procedure for any statistical parameter,
bootstrapping. (For a complete exposition of this topic see, e.g., [7].) Here,
we describe the simplest procedure, namely, the percentile bootstrap. As
in all bootstrap methods, the percentile bootstrap relies on a rather simple
and intuitive idea. Instead of making assumptions about the underlying
distribution (unknown to us) from which our observations are sampled, one
assumes the collected data is a true exact distribution (even though it is
only its approximation). Informally speaking, we do several “fake experi-
ments” using the observations from our sample as if they constituted the
whole general population we should have sampled from if we could. For
each of these experiments, we may compute any estimate of interest, for
instance, the mean. Because of random and independent sampling, we get
different means from different experiments, with some values more likely
than others. After enough experiments, we get a distribution of bootstrap
estimates which approximates the distribution of estimates from the true
and unknown distribution.

It is advisable to have n > 1,000 independent replications of simulation
generated by SilverDecisions. Next, we select the number of bootstraps
replications B, which typically is taken as 10,000, sometimes even slightly
more. In one bootstrap replication i, we sample n elements from the set
P1, D2, ---, Pn with replacement and calculate the point estimator of a
statistical parameter of interest. Denote this value as b?. Since we sample
with replacement each time, we expect

n(l—1/n)" ~nj/e

elements not to be selected in a single bootstrap sample, and some elements
are selected more than once. After this procedure, we have B values bf To
calculate A percent confidence interval (typically A is 0.9, 0.95 or 0.99,
as discussed above), we calculate (1 — A)/2 and (1 + A)/2 percentile of
bootstrapped point estimators b?. Those percentiles define the lower and
upper end of the required confidence interval.

To conclude this section, let us describe the bootstrapping procedure a
bit more formally. Assume that P is a random variable whose cumulative
distribution function is F. We are interested in analyzing the distribution
of some statistics s of its independent n-element sample. Assume that the
actual n-element sample of P is collected. Above, we have denoted the
sampled elements as p1, p2, ..., pn. Now, we may compute this sample’s
empirical cumulative distribution function and denote it F. Note that the
random variable describing the distribution of statistics P in an independent
n element sample is a random variable s(Pp, Ps, ..., P,). As noted above,
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it is challenging to get the distribution of this random variable if F' is not
known. However, we have F' that can be easily used. Denote the random
variable following this distribution function as P. Since for n large enough
F is close to F; we may take that instead of sampling from P to get the
distribution of s(Pr, P,.. ., F,), we may sample from P (which is close to
P). As a result, we get the distribution of s(Pl,Pg, e ,Pn), which then
will be close to the distribution we are looking for. The crucial trick why
this procedure is so simple and works well in practice is that it is very easy
to obtain the sample of S(P]_,PQ, .. ,Pn) Indeed, note that P; is just a

single element sampled from pi,po, ..., pn. So, all we need is to qample n
elements from this set with replacement since we want Pl, Pg, .. P to be
independent.

In Section 3.3, we provide an example of the calculation of confidence
interval using bootstrapping.

3.2.4 Common Random Numbers

So far in our discussion, we have considered only the analysis of a single
payoff, that is, a single decision in the decision tree. However, it is often
required to compare different decisions under uncertain parameters. Tech-
nically, two different decisions correspond to two transformations P4 and
Pg of the underlying random variable X. Of course, one could consider
random variables P4(X) and Pp(X) independently, but often, in the anal-
ysis of decision trees, random variables P4(X) and Pg(X) are positively
correlated. This will happen if the same factor influences different decisions
in a similar direction (although it does not have to be always true). For
instance, in our decision tree from Figure 3.7, changing parameter p_pos
either influences all the decisions in the same way or does not affect them
(this happens for a decision where we decide to do nothing).

To understand the consequence of the positive correlation of P4(X) and
Pp(X), let us observe that:

D?*(PA(X) — Pp(X)) = 0% + 0% +20408p,

where o2 is the variance of P;(X), and p is the correlation between P4(X)
and Pp(X). In consequence, the variance of P4(X) — Pp(X) is less than
the sum of the two variances of underlying transformations if p > 0 (that
is, assuming a positive correlation).

In such cases, if one wants to compare the expected payoff of P4 and
Pp, it is desired to investigate the distribution of P4 — Pp by evaluating Pa
and Pp for the same realizations of random variable X. Having such data,
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one can, for instance, compare the mean of the distribution of P4 — Pg
with zero. Such a technique is known in the literature as Common Random
Numbers (CRN) (or correlated sampling) and allows one to reduce the
number of required replications of simulation. However, let us stress that if
p < 0 (that is, P4(X) and Pg(X) are negatively correlated), then CRN can
“backfire”, that is, it increases the variance, not decreases it, as intended.

In SilverDecisions, when probabilistic sensitivity analysis is performed,
samples are generated using Common Random Numbers. As it is described
in the next section, one can export a CSV file from SilverDecisions and
take advantage of CRN in the analysis of decision trees.

3.3 Sensitivity analysis of decision trees

Let us show an application of the theory presented in the previous sub-
section for the example model presented in Figure 3.6. Assume that there is
some level of uncertainty about the values of the parameters p_pos (prob-
ability of positive screening), p_pos_good (probability of a good outcome,
provided that screening is positive), and p_neg_good (probability of a good
outcome, provided that screening is negative). Assume that for each pa-
rameter, the decision-maker assesses that they could deviate from their
default values by 0.1 in both directions, so the ranges are: p_pos: [0.4,0.6],
p_pos_good: [0.6,0.8], and p_neg_good: [0.2,0.4]. For simplicity’s sake, we
assume that the probabilistic assessment of their uncertainty is that they
are drawn from a uniform distribution over these intervals.

To perform the sensitivity analysis in SilverDecisions, one needs to
click the button in the toolbar that is marked with the red circle (see Fig-
ure 3.9). The simplest way to check how sensitive the results are to the
parameterization of the model is to use ‘N-way sensitivity analysis’. In
such an analysis, as can be seen in Figure 3.10, one needs to specify which
variables are to be analyzed, the range of variability of each of the vari-
ables, and the granularity of screening of these variables. In our example,
we specified 11 levels for each variable, so they are all separated by 0.02.
For instance, for the variable p_pos we considered the following values: 0.4,
0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, and 0.6.

In the N-way sensitivity analysis, SilverDecisions considers all com-
binations of possible values of the analyzed variables. It will be 113 = 1,331
scenarios to be explored in our case. Then, the expected payoff is calculated
for each scenario and each possible decision rule. The results of the calcu-
lation are presented as a pivot table; see Figure 3.11. The highest payoffs
are highlighted with red, while the lowest ones are highlighted with blue.
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Figure 3.9: Starting sensitivity analysis module.
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Figure 3.10: N-way sensitivity analysis configuration.

The pivot table summarizing the N-way sensitivity analysis contains a
piece of complete information that the decision-maker might be interested
in. However, as one can see, it might not be easy to assess it quickly, as it
provides a lot of information. To simplify the analysis, SilverDecisions
provides some alternative methods.
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Sensitivity analysis

Number of parameters larger than 2. Sensitivity analysis display might fail or be very slow.
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Figure 3.11: N-way sensitivity analysis results.
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Figure 3.12: Tornado diagram analysis configuration.

The first of them is the ‘Tornado diagram’. In this diagram, as before,
one needs to select variables to analyze, their ranges, and the granularity
of the analysis, see Figure 3.12. However, this timeless information is pro-
vided as an output that might be easier to comprehend. First, the analysis
is performed separately for each variable. For instance, if SilverDecisions
analyzes the p_pos variable, it assumes that the remaining variables have
their default values. The result of the Tornado diagram calculation is pre-
sented in Figure 3.13.
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Sensitivity analysis
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Figure 3.13: Tornado diagram analysis results.

Moreover, the outcome is also more compact than what was provided
by the N-way sensitivity analysis. Indeed, only the results for the optimal
policy that is chosen for the default values of the parameters are presented.
For such a default policy, we are informed about the range of outcomes that
changing a given parameter can produce under the selected policy.

Another possibility, the ‘Spider plot’, is useful when the decision-maker
is interested in the shape of the reaction of the model payoff to changes
in the parameters. To create such plots, one needs to provide a common
percentage deviation for each variable, its starting reference value, and the
number of sampled points, see Figure 3.14.

As a result, the user can investigate how the payoff, under the default
decision policy, changes as the given variable changes. In Spider plots,
similarly to Tornado diagrams, changes to each variable are considered sep-
arately; see Figure 3.15. As one can note, for each variable, we get a line of
different colors showing how the payoff changes with the percentage change
of a variable.

Based on both the Tornado diagram and Spider plot, our results are not
sensitive to changes in the p_neg_good variable. The reason is obvious as
this option is not selected under the default policy. However, it can also be
observed that the results are more sensitive to p_pos_good than to p_pos.

Now let us turn to ‘probabilistic sensitivity analysis’ in which we assume
that all parameters can change at the same time given their distributions.
Recall that in our example, for simplicity, we assume that the distribution
is uniform.
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Figure 3.14: Spider plot analysis configuration.
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Figure 3.15: Spider plot analysis results.
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Figure 3.16: Probabilistic sensitivity analysis configuration.

A first step in the probabilistic sensitivity analysis is a determination of
the number of replications of the simulation that are needed to guarantee
a high quality of an approximation. In the whole model, the range of
possible payoffs is from 72 to 120; therefore, assuming our goal is to have
the mean estimated with the deviation of at most 1 for each policy with
99% probability, using the normal approximation method, we calculate that
we need at least n = 3,823 samples. In our experiment, we set the number
of samples to 5,000, as this should still be fast enough to compete. The
configuration of probabilistic sensitivity analysis is presented in Figure 3.16.

From Figure 3.17, we observe that under the assumed uncertainty ini-
tially optimal option, which is the best on average, is

Social background screening?:yes - (Give aid?:yes, Give
aid?:no)

However, the probability that it is best is only 53.8%, and the option
Social background screening?:no - (Give aid?:no)

is only slightly worse on average but has a 45.9% probability of being op-
timal. All other options are not competitive. This evidence still favors the
default option, but the decision-maker would probably, in such a situation,
closely consider which one of the available options to choose, given that the
advantage of one over the other is not significant.

Before we conclude this chapter, let us show how one could analyze
data exported from probabilistic sensitivity analysis. This can be done
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Sensitivity analysis
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Figure 3.17: Probabilistic sensitivity analysis results.

by clicking the Export CSV button in the probabilistic sensitivity analysis
result plot. Below we show a sample of the exported CSV file (we show
only the first few lines and have cropped the output on the right):

"policy_number","policy","p_pos","p_pos_good","p_neg_good","payoff"

1,"Social background screening?:no -- (Give aid?:no)",0.4826760816314803,0.7036809
2,"Social background screening?:no -- (Give aid?:yes)",0.4826760816314803,0.703680
3,"Social background screening?:yes -- (Give aid?:no, Give aid?:no)",0.48267608163
4,"Social background screening?:yes -- (Give aid?:no, Give aid?:yes)",0.4826760816
5,"Social background screening?:yes -- (Give aid?:yes, Give aid7:no)",0.4826760816
6,"Social background screening?:yes -- (Give aid?:yes, Give aid?:yes)",0.482676081
1,"Social background screening?:no -- (Give aid?:no)",0.4518324999084586,0.6782963
2,"Social background screening?:no -- (Give aid?:yes)",0.4518324999084586,0.678296
3,"Social background screening?:yes -- (Give aid?:no, Give aid?:no)",0.45183249990
4,"Social background screening?:yes -- (Give aid?:no, Give aid?:yes)",0.4518324999
5,"Social background screening?:yes -- (Give aid7:yes, Give aid?:no)",0.4518324999
6,"Social background screening?:yes -- (Give aid?:yes, Give aid7:yes)",0.451832499

As one can see, the columns consist of policy number (automatically gen-
erated by SilverDecisions), policy description, the sampled values of
variables that are changing in the analysis (in our case, this is p_pos,
p_pos_good, and p_neg_good), and the payoff for the given configuration
of parameters. Note that SilverDecisions uses the same configuration of
parameters for all policies before moving to the next configuration. So, as
a result, we deal with a simulation that uses Common Random Numbers
for all policies, as advised in the previous sub-section.

Such exported data can now be analyzed in a spreadsheet or using a
programming language such as Python, R, or Julia. Below we show how
one can use the Julia language to calculate confidence intervals for the
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payoff for all available options, both using the parametric and the boot-
strapped confidence intervals. We used Julia 1.6.3 [4], additional packages
DataFrames.jl 1.2.2 [19] and CSV.j1 0.9.3 [28]. Suppose the reader is in-
terested in learning how to use the Julia language to analyze their datasets.
In that case, we recommend starting with the tutorials that can be found in
the Julia Academy https://juliaacademy.com/. Here, we just briefly explain
the necessary steps we make in our analysis.

In the code block below, we first load the required packages, namely,
CSV, DataFrames, and Statistics (they should be installed first). Then,
we read the charity_psa.csv file into a data frame, where the file should
be generated by SilverDecisions probabilistic sensitivity analysis module
and saved to the working directory where the analysis is run. Next, we check
the number of rows in our data frame. We see 30,000 rows, which exactly is
as expected, as we have six policies and requested 5,000 repetitions of the
simulation for each of them. Finally, we make sure that we have read the
data frame column names correctly by displaying them.

julia> using CSV, DataFrames, Statistics
julia> data = CSV.read("charity_psa.csv", DataFrame);

julia> nrow(data)
30000

julia> names(data)
6-element Vector{String}:
"policy_number"
"policy"
"p_pos"
"p_pos_good"
"p_neg_good"
"payoff"

As we now have the data imported into Julia, we may proceed with
the analysis. We start with the parametric confidence intervals. The ¢i99
function takes a vector and returns three values: its mean, the lower and the
upper end of the 99% confidence interval for the mean following the formula
we have discussed in the previous sub-section. Next, we want to apply this
function to our data frame. To do so, we group our data by policy_number,
pass the payoff column to our ci99 function, and collect the result back as
a table having three columns returned by this function. As a result, we get
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a data frame with six rows. In each row, we have any information about
the policy number, the mean payoff, and its 99% confidence interval.

julia> function ci99(v)
p = mean(v)
s2 = var(v)
n = length(v)
z = 2.576
return (mean=p,
lo=p-z*sqrt(s2/n),
hi=p+z*sqrt(s2/n))
end
ci99 (generic function with 1 method)

julia> combine(groupby(data, "policy_number"),
"payoff" => ¢ci99 => AsTable)
6x4 DataFrame

Row | policy_number mean lo hi
| Int64 Float64 Float64 Float64
e e e e
11 1 100.0 100.0 100.0
2 | 2 97.4623 97.3845 97.b54
31 3 97.0 97.0 97.0
4 | 4 91.2284 91.1753 91.2816
5 | 5 100.234 100.184 100.283
6 | 6 94.4623 94.3845 94.54

Next, we turn our attention to computing these intervals using boot-
strapping. To do so, we define the boot99_10000 function that does com-
pute a 99% confidence interval using 10,000 bootstrapping replicates. Note
that the expression rand(v, length(v)) in the code draws random ele-
ments from vector v (with replacement) the number of times equal to its
length, exactly as required in the bootstrapping procedure. The rest of the
code is similar to the one above. As one can see, for our example decision
tree and 5,000 replicates of simulation, the parametric and the bootstrapped
confidence intervals are very similar.

julia> function boot99_10000(v)
b = [mean(rand(v, length(v))) for i in 1:10000]
return (p=mean(v), lo=quantile(b, 0.005),
hi=quantile(b, 0.995))
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end
boot99_10000 (generic function with 1 method)

julia> combine(groupby(data, "policy_number"),
"payoff" => boot99_10000 => AsTable)
6x4 DataFrame

Row | policy_number p lo hi
| Int64 Float64 Float64 Float64
e e A e e
1] 1 100.0 100.0 100.0
2 | 2 97.4623 97.3832 97.5434
3| 3 97.0 97.0 97.0
4 | 4 91.2284 91.1757 91.2822
5 | 5 100.234 100.183 100.283
6 | 6 94.4623 94.3844  94.5403

There are, of course, many more other analyses that can be performed
using the produced data. We encourage the reader to try to perform some
of them. Our presentation and explanation of the commands we used to
produce confidence intervals were very brief, as in this book, we concen-
trate on SilverDecisions. The reader interested in learning more about
how one can analyze data using DataFrames. jl in Julia is encouraged to
investigate its documentation which can be found at https://dataframes.
juliadata.org/.






Chapter 4

Advanced topics

MICHAL JAKUBCZYK

In the current chapter, we present how SilverDecisions may be used in
slightly more advanced contexts. First, in Section 4.1, we show how to cal-
culate the value of the real option and the value of information. Such mea-
surements are useful to understand the value of available courses of action
to the decision-maker. Then, in Section 4.2, we show how SilverDecisions
can be used to support decision-making with multiple criteria (e.g., cost and
effect). In this way, SilverDecisions can be used, for instance, in a health
technology assessment context where typically both economic and clinical
aspects are accounted for in decision-making. Finally, in Section 4.3, we
show how the time dimension of the decision problems can be captured
more fully by allowing for the discounting, i.e., the future pay-offs have less
value from the perspective of the current moment. We also show how non-
standard discounting methods can be implemented in SilverDecisions.

4.1 The value of real option & of information

Typically, we solve decision problems that represent (with some simpli-
fications) the actual state of affairs. Then, the structure of a decision tree
represents the possible actions of the decision-maker and the reactions they
may face. The probabilities in chance nodes represent the decision-maker’s
information about what reactions to expect.

The decision trees may also be used to learn whether (how much) we
would profit from having additional actions to choose from (or how much
we would lose if we lost a possibility to act in a given way) or how much we
would gain by learning more about what state of the world to expect. In
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other words, we will learn now how to calculate the value of a real option
and the value of information.

4.1.1 The value of real option

We introduce this concept using an example.! A family-run company
producing wooden toys needs to decide what type of machine to lease. Ma-
chine A costs $3000 a month and, depending on the wood quality, will
produce 1000 (with bad wood, probability 20%) or 2000 (with good wood,
probability 80%) toys. Each toy yields a profit (excl. lease cost) of $2. Ma-
chine B costs $5000 per month and will produce 1500 (bad wood) or 3000
toys (good wood), $2 profit each.

The whole monthly batch can be sold locally or be exported at a fixed
cost of $1000. In the latter case, the revenue (excl. lease & export cost) will
double with a probability of 30% (or stay unchanged, otherwise).

The wood is purchased once per month, and the quality is only learned
after the purchase (i.e., it cannot impact which machine is chosen). The
firm cannot change the machine based on learning the wood quality. We
assume that the next batch’s quality is independent of the previous batches
(so the quality of previous batches cannot impact the selection of machines
to lease in subsequent months).

The company thinks on a long-term basis and wants to maximize the
expected profit.

The above situation is represented in Figure 4.1, and the decision tree
can be downloaded from the book website as a toys. json file. It is a good
practice to define parameters in the global scope, where possible, or locally
in individual nodes if we update them because of past actions/reactions. In
the present example, we defined the following parameters globally:

cA = 3000
cB = 5000
cEx = 1000
p = 2

ExSP = 2
prExS = 0.3
prGW = 0.8

denoting cost of A, cost of B, cost of export, revenue, multiplier due to
export success, probability of export success, and probability of good wood,
respectively. To simplify working with the tree, in all the non-root decision
nodes, we define locally the variable quant equal to (from top to bottom,
respectively) 1000, 2000, 1500, and 3000. Then this variable can be used in

! Motivated by [35], example 16.13.
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Figure 4.1: A toy-producing company tree.

formulas defining pay-offs: quant * p for local sale or export failure, and

quant * p * ExSP for export success. This approach allows for speeding
up the tree construction by copying and pasting parts of the tree.

As it is shown in the tree, the optimal strategy involves leasing machine
B and exporting the output if 3000 toys have been produced. Because of the
assumptions made in the task, the solution can be treated as a short-term
one (what to do in a given single month) or a long-term one (which machine
to keep on leasing): past experience with wood quality does not change the
optimal strategy (assuming that the probability of wood quality being good
is known to be 80%). The one-month expected profit amounts to $1040.

Treating the solution to the problem as a departure point, we will now
value three real options the company has. First, how much is the real
option to lease A (at the current market price) worth? The answer seems
(and is) intuitive and easy. The company is not using this option in an
optimal strategy. Hence, losing this option does not harm the company:
the value of this option is zero. A more automatic approach to valuing a
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real option is to delete it from the tree and calculate the decrease in the
value of the problem (expected pay-off of optimal strategy). The reader
can immediately verify that deleting the part of the tree starting with the
branch ‘machine A’ does not change the value of the whole problem.

Secondly, how much is the real option to lease B (at the current market
price) worth? The company is using this option; hence, losing it would
probably make the company worse of. Thanks to the simplicity of the
current problem, we can immediately see that then the company would
have to lease A. The diagram shows that the expected profit would amount
to $3760 — $3000 = $760. The value of the problem decreases by $1040 —
$760 — $280. Hence, the real option of B being offered for lease (at the price
of $5000) is worth $280. We can also verify this by increasing the cost of B
( ¢cB=5280 ): then there are two optimal solutions, one involving leasing A
and the other involving leasing B.

Third, how much is the real option to export worth? We now refer to the
option deeper inside the tree, and answering this may be more difficult. A
naive analysis would go as follows: ‘we only use export after producing 3000
toys with B. Then the expected pay-off after export amounts to $6800 (7800
— 1000), and the pay-off of selling locally amounts to $6000. This means
a loss of $800; hence, the real option of export is worth $800°. The correct
analysis must account for two additional factors: producing 3000 toys is
not guaranteed (the loss of $800 may not materialize), and the worsened
prospects after choosing B may lead to not choosing B in the first place.
The best way to value a real option is to remove it from a tree and see
the impact on the value of the problem. The reduced tree is presented in
Figure 4.2. Without the possibility to export, the firm will lease machine
A and make, on average, $600. Hence, the loss amounts to $440. In other
words, the company should be willing to pay up to $440 every month to
have the possibility to export.

It is important to appreciate we have calculated the value of the possi-
bility to export from the perspective of the starting moment of the whole
problem, before knowing if the company would be willing to export, i.e., be-
fore knowing if enough toys have been produced to make export attractive.
It is a different question how much the possibility to export is worth once
the company has already picked machine B and found 3000 toys have been
produced. Then, the naive reasoning presented above becomes the correct
one. To put it differently, if machine B is selected, then the cost of export
can increase by up to $800, and the toys would still be exported if 3000 have
been manufactured. The break-even situation is presented in Figure 4.3.
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1000 toys locally _ -$1,000
$0 0.20 . $2,000 100 < 0.20
machine A $2,000
-$3,000 1.00
$3,600 2000 toys locally R $1,000
$0 0.80 . $4,000 100 < 0.80
$4,000
1500 toys locally -$2,000
$0 0.20 - $3,000 1.00 4 0.00
machine B $3,000
-$5,000 0.00
$5,400 3000 toys locally $1,000
$0 0.80 - $6,000 1.00 4 0.00

$6,000

Figure 4.2: A toy-producing company tree, with no export.

locally -$2,000
, . 0.20

success

1500 toys -$800

0.00

$6,000 030
$3,000
-$1,800 0.00

Q

-$3,800
0.00

machine B $3,900
-$5,000 1.00

$400

$3,000 0.70

locally $1,000
, ! 0.80
success ‘ $5,200

$5,400

3000 toys

$0 0.80

$12,000 0.30 0.24
$6,000

-$1,800 1.00
-$800

0.56

$6,000 0.70

Figure 4.3: A toy-producing company tree, with machine B only and an
increased cost of export.

4.1.2 The value of perfect information

Using decision trees, we can also calculate the value of knowing some-
thing in advance, i.e., the value of information. We will start with perfect
information and then proceed with imperfect one.

Continuing our example from the previous subsection, we ask: what is
the value of learning the wood quality in advance? The ‘in advance’ part
denotes that the company finds out what the actual quality is, and only
then does it have to choose the machine, while in the original problem, the
company had to choose first and learn the quality later. This reversal can
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be represented by starting a decision tree with a chance node representing
the learning of uncertain wood quality. The chance node should have to
edge stemming out, representing the good or bad quality.

It is not always immediately clear to everyone what the probabilities
assigned to these edges should be. Importantly, the structure of the quality
of batches has not changed, i.e., still 80% are good. The company simply
learns the quality earlier; hence, in 80% of the cases, the perfect information
should sound ‘good quality’.

After learning the quality, the actions available to the company do not
change. Therefore, it is typically easiest to copy-paste the original tree as
subtrees after the root chance node.

There is only one more thing to take care of: the original tree encom-
passed the possibility of the quality turning out to be good/bad after the
machine has been chosen. We must make sure the outcome of these chance
nodes is consistent with what the company has learned in the root node (the
information obtained in the beginning is perfect). This is done by setting
the probabilities to 0% or 100%, as needed. For example, in the half of the
new tree, after learning the quality would be bad, we need to make sure
machine A produces 1000 toys and machine B produces 1500 toys.

The resulting tree is illustrated in Figure 4.4 (file toysPIquality. json).
Using variables makes things easier: we copy-paste the original tree to the
new root chance node; we can use prGW to set the probabilities in the root
node; in root’s children we update either prGW=0 (upper child) or prGw=1
(lower child). The formulas take care of the rest. Obviously, we can simplify
the structure by removing the parts of the tree which are not reached due to
some probabilities equal to zero. Nevertheless, when working with software,
it is actually easier to leave the pasted tree unchanged and simply overwrite
the values of the parameters.

The value of the new problem amounts to $1240: hence, the perfect
information leads to an increase of $200. This difference measures the ex-
pected difference in outcomes between two situations: 1) when the company
has to decide not knowing the batch quality (and will choose machine B,
see Figure 4.1), 2) when the company learns the quality first and then se-
lects either A (20% of the time) or B. This value is typically called the
expected value of perfect information (EVPI). Importantly, the information
is valuable because it impacts the decision-maker’s actions. Should the
decision-maker make the same choices, whatever content the perfect pieces
of information contain, then the information would have no economic value
(and would only satisfy the curiosity).
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locally -$1,000
$2,000 100 020

1000 toys success $0
$4,000 030 0.00
$2,000 \&xport
-$1,000 0.00
machine A $2,600 failure $2,000
-$3,000 1.00 $2,000 0.70 0.00
$2,000 locally $1,000
$4,000 0.00 0.00
success $4,000
0.00
$4,200 export
-$1,000 100
$5,200 $0
$4,000 0.70 0.00
locally -$2,000
$3,000 100 0.00
1500 toys success 50
$6,000 0.30 0.00
$3,000 export
-$1,000 0.00
$3.000 \failure -$3,000
-$5,000 0.00 $3,000 070 0.00
locally $1,000
$6,000 0.00 0.00
success $6,000
$12,000 0.30 0.00
$6,800 export
-$1,000 100
s7.800 \failure 0
$6,000 0.70 0.00
locally -$1,000
$2,000 100 0.00
1000 toys success $0
$4,000 0.30 0.00
$2,000 export
-$1,000 0.00 _
machine A $2,600 failure -$2,000
-$3,000 0.00 $2,000 070 0.00
$4,200 locally $1,000
$4,000 0.00 0.00
success $4,000
50 1.00 $8,000 0.30 0.00
$4,200 \&xPort
-$1,000 100
65200 \Jfailure $0
$4,000 0.70 0.00
locally -$2,000
$3,000 1.00 0.00
1500 toys success $0
$6,000 0.30 0.00
$3,000 \export
-$1,000 0.00
s3.000 \failure -$3,000
$3,000 070 0.00

-$5,000 1.00

locally $1,000

$6,000 0.00 0.00

success $6,000
$12,000 0.30 024

$7,800 $0
$6,000 0.70 056

Figure 4.4: A toy-producing company tree, with perfect information on
the wood quality in advance.

$6,800 \ExPort
-$1,000 100

The reader is encouraged to calculate the EVPI on the export’s success
(or not). Then, the structure of the tree will be identical to Figure 4.4,
except for the labels (also, the parameters will differ). Finally, the reader
may calculate the EVPI of two uncertainties simultaneously: the wood
quality and export outcome. Then we need to represent that the decision-
maker learns two things before having to make any decision, which requires
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a root chance node with more edges or two consecutive chance nodes. The
idea of a solution is hinted at in Figure 4.5.

success
0.30
bad Q
0.20 1
fail
0.70
!
success
0.30
good
0.80
fail
0.70

Figure 4.5: A part of the tree for toy-producing company with two pieces
of info

4.1.3 TImperfect information, working with conditional
probabilities

In the previous subsection, we have learned how to calculate the value
of perfect information. The information is rarely perfect in real life: what
really happens may occasionally differ from what the information foretold.
Still, EPVI is a useful tool in decision-making, as it gives the upper bound
on how much it is worth to pay for any information. In this subsection, we
present how to precisely calculate the value of imperfect info.

We work with a new example, a version of a standard problem often used
to teach decision trees 2. An investor owns a land plot that may contain
shale gas layers (as half of the neighboring plots contain gas, the investor
estimates the probability of layers at 50%). If the transaction is finalized
immediately, the investor has just got an offer to sell for $750,000. The
investor can also build a facility to exploit the layers for $250,000. If gas
is present, the revenue will amount to $2,500,000. Otherwise, there is no
revenue, and the plot cannot be sold (trying to sell a plot with a facility
built can only mean there is no gas). The investor is risk-neutral and wants
to base her decisions on expected value maximization.

% For example, see [31].
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The above problem is illustrated in Figure 4.6 (all pay-offs in ’000s
dollars). The owner should build the facility, which yields $1 million on

average.
sell $750
$750 0.00 0.00
gas $2,250
$2,500 0.50 0.50

-$250
$0 0.50 0.50

Figure 4.6: A simple decision problem of a land-plot owner (pay-offs in
'000s dollars.)

build facility
-$250 1.00

$1,000

$1,250

Based on the considerations in the previous subsection, we create a tree
that represents the problem with perfect information on the presence of
gas, see Figure 4.7. The owner should immediately sell if she learns there is
no gas and should exploit otherwise. The EVPI amounts to $500,000 (the
difference between the value of two problems). The standard interpreta-
tion holds: if we imagine multiple companies facing a decision problem as
described, the first group of companies does not know if the gas is present
(hence, all of them decide to build the facility, and on average half of them
find gas) and the second group learns about the presence in advance (about
half of them build the facility and find gas, and half of them sell the empty
plot), then on average, the first group will make $500,000 more.

The information is imperfect if it might disagree with the true state of
affairs. For example, in Figure 4.4, the information may forecast the wood
quality as being good, while in reality, it is bad. In the current example,
we can imagine a geological test that attempts to detect the presence of gas
but may occasionally give false results. When speaking of diagnostic tests,
we can measure the performance of the test by two parameters: sensitivity
and specificity. The readers can find a more detailed introduction to the
concepts related to conditional probabilities in [13].

In our case, sensitivity measures how good a test is at detecting gas
when the gas truly is present (i.e., how sensitive the test is to the presence
of gas). More formally, sensitivity is measured as the probability of a test
giving positive results (suggesting yes) given that the oil is present:

sensitivity = P(test positive | gas present), (4.1)

where the vertical line, |, means ‘given that’ or ‘conditioned on’.
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sell $750
$750 0.00 0.00

gas $2,250
$0 0.50 $2,500 1.00 0.50
build facility
-$250 1.00
-$250
O 0.00
$1,500 sell
$750 1.00
no gas $2,250
$0 0.50 $2,500 0.00 0.00
build facility
-$250 0.00
-$250
$0 1.00 0.00

Figure 4.7: The decision problem of a land-plot owner with perfect
information (pay-offs in '000s dollars.)

Specificity measures how good a test is at detecting a lack of gas when
the gas truly is absent (i.e., how the test reacts specifically to the presence
of gas, and not some other things). More formally:

specificity = P(test negative | gas absent). (4.2)

If sensitivity is lower than 100%, then sometimes the result will be nega-
tive even for a gas-bearing field; hence, the negative result does not preclude
the gas presence. Analogously, if specificity is lower than 100%, then the
result may be positive even if gas is missing; hence, the positive result does
not guarantee the presence of gas.

In the present example, we assume sensitivity = 90% and specificity =
70%. From the decision-maker’s perspective, we are rather interested in the
probability of gas presence/absence given the test result is positive /negative,
i.e., we need conditioning in the opposite direction than in the definitions
of sensitivity /specificity. SilverDecisions helps in recalculating the prob-
abilities in the following way. We can represent the relations between two
random events — whether or not the gas is present and what the result of
the test is — with a probability tree, i.e., a simplified decision tree lacking
decision nodes. The current situation is visualized in Figure 4.8 (upper
part). The probabilities in the first layer are unconditional: they are the
probabilities of gas being present/absent without any additional informa-
tion. The probabilities in the second layer are conditional on the presence



CHAPTER 4. ADVANCED TOPICS 93

(upper part) or absence (lower part) of gas; for example, in the tree, we
see the probability of a positive test result condition on gas being present
amounts to 90%.

If we right-click on the root and select the ‘Flip subtree’ option, the
ordering of events will be changed. Now, the first layer presents the un-
conditional probability of the test being positive/negative, and the second
layer presents the probabilities of gas being present /absent condition on the
test result. For example, the probability of a test being positive amounts
to 60%. If the test is positive, the probability of gas being present increases
(from a priori 50%) to 75% (called a posteriori probability, after additional
information has been gathered). If the test is negative, the probability
decreases to 12.5%.

In our case, we had two possible states of the world (gas present or
absent), and the test could yield two results (positive or negative); hence,
the probability tree had 2 x 2 = 4 terminal nodes. We could generally
consider bigger trees with k states of the world and m test outcomes (hence,
k x m terminal nodes). To flip such trees, we need to make sure all the first
(k) layer chance nodes have the same number of children (m), and the labels
along edges leading to these children are the same (SD must be informed
which conditional events denote the same thing). Flipping the tree twice
recovers the original tree structure.

In the current version of SilverDecisions (as of January 2022), if there
are formulas in the probability tree, they are replaced with values when
flipping (and will not be recovered if the tree is flipped again). Probability
trees are usually used with no pay-offs. If there are pay-offs, after the flip,
the pay-offs are attached to the nodes leading to terminal nodes. In this
respect, flipping the tree twice may not recover the original pay-offs (but
the total pay-offs of terminal nodes will not change).

Because the formulas are lost when flipping a tree, it is worthwhile to
learn the formulas used in the operation, in order to construct the flipped
trees manually using parameters. In general case, there are k states of the
world (exactly one obtains), denoted Si, ..., Sg. There are m test results
(exactly one obtains): T, ..., T),. The input parameters are P(S;) for
i=1,...,k, and P(Tj|S;) fori=1,...,kand j = 1,...,m. The formulas
for conditional probability yield:

P(T;NS;
PTs) = T e 43)
We then immediately get

P(T;) P(T3)
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test +
0.90 0.45

gas present
0.50

test -
0.10 0.05
test +
0.30 0.15
gas absent
0.50
test -
0.70 0.35
gas present
0.75 0.45
test +
0.60

gas absent
0.25 0.15

test -
0.40

gas present

0.05
gas absent
0.875 035
Figure 4.8: Probability tree for the gas-plot example (upper part) and its
flipped version (lower).

Further, notice that

P(T;) = P( T;NS;) = P(T;NS;) = (4.5)
i=1,....k i=1,...,k

P(T5S;) x P(S;). (4.6)

i=1,...,k

Returning to our example, k = 2 and m = 2, S (S2) denotes gas present
(absent), Th (T5) denotes positive (negative) test result. P(S1) = P(S2) =
0.5, P(T1]S1) = 0.9, P(T3|S1) = 0.1, P(T1|S5) = 0.3, and P(T3|S2) = 0.7.
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Using the above formulas:

P(T1) =0.9x05+03x05=
= sensitivity x gas + (1 — specificity) x no gas =
=0.6

P(T5) =0.1 x0.5+0.7x 0.5 =

= (1 — sensitivity) x gas + specificity X no gas =

— 0.4
P(SI|T}) = % —0.75
P(S,|T1) = % ~0.25
P(SH|Ts) = 010%05 —0.125
P(S5|Ts) = 0'70%0'5 — 0.875

It is important to understand that the necessity to recalculate the prob-
abilities in a specific decision problem often arises. Even though we need
P(S;|T};) rather than P(T}]S;), the latter is more easily available: it mea-
sures only the characteristic of the test (and not of the specific decision
problem at hand) and can be provided, e.g., by a test manufacturer. The
former depends on the P(S;) and cannot be given abstracting from a specific
context.

Having calculated the probabilities, we can come back to valuing the
imperfect information (i.e., the test with non-perfect sensitivity or speci-
ficity). As when valuing real options, we need to construct a tree that
represents the situation of a decision-maker who has the possibility to use
the test. Just as with perfect information, the information may be valuable
because the decision-maker can choose their behavior depending on the sig-
nal received. In our example, the decision-maker can sell the plot or try to
exploit the plot. Just as with perfect information, we assume the imperfect
information arrives immediately and does not change the selling price (or
any other pay-off). Then the problem is represented in Figure 4.9.

SD enhances building a decision tree from a probability tree by injecting
decision nodes. If you start with a flipped probability tree (lower part of
Figure 4.8), then inject a decision node in the edges stemming out of the
root and see how this operation speeds up, arriving at Figure 4.9. The value
of the new problem (with imperfect information) amounts to $1.275 million
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(the pay-offs in the figure are presented in ’000s), and so the EVIT — $1.275

million — $1 million = $275,000.
gas present $2,250
$2,500 0.75 0.45

build facility
-$250 1.00

$1,875 -$250
$0 0.25 0.15
$1,625 sell
$750  0.00
$2,250
0.00
build facility
-$250  0.00
_ -$250
$0 0.40 $0 0.875 0.00

$750 sell $750
$750 1.00 0.40

Figure 4.9: Representing the imperfect information in gas-plot problem.

4.2 Multiple criteria

4.2.1 Defining the problem with two criteria

Decision trees are often presented as tools supporting the managers in
making business-oriented decisions, where the pay-offs are expressed in mon-
etary terms only. Sequential decision problems with uncertainty also prevail
in other contexts. An important example is health technology assessment
(HTA), where available health technologies must be compared (e.g., to de-
termine which should be reimbursed by the public payer) using two criteria:
health and money. We present how two-criteria problems can be handled
in SilverDecisions using an example from this area. Similar problems
can arise in other contexts of public decision-making: e.g., environmental
policy (where environmental gains must be juxtaposed with monetary cost),
safety-related problems (e.g., crime rate vs. protection cost), or transport-
related problems (delay time vs. cost of improving the infrastructure).

In HTA, the comparison must involve economic criteria (available re-
sources are limited) and clinical ones (how much health can be bought).
Sequentiality may stem from the clinical process encompassing several steps,
e.g., consecutive lines of treatment, a possible sequence of complications or
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adverse events, or the diagnosis process preceding the treatment decisions.
Uncertainty is an inherent part of the clinical process: a patient may be
cured or not, the treatment may require hospitalization, the diagnostic test
may end up positive or negative, etc. Please, see [10] for more information.

Costs of treatment are measured in monetary terms, and effects are typ-
ically expressed as quality-adjusted life-years (QALYs): a measure combin-
ing the longevity and health-related quality of life as a single number. If the
decision-maker had a clear trade-off coefficient between the two, i.e., were
able to precisely state their willingness-to-pay (WTP) for a unit of effect;
then, both criteria could be merged into a single one: the net benefit, NB,
is given as NB = effect x WTP — cost. Typically, the decision-maker has
only an imprecise assessment of WTP and would like to learn the impact of
WTP on the recommended strategy. For this reason, both criteria should
be presented explicitly in the tree and the description of possible decision
alternatives (strategies, policies).

SilverDecisions allows using two criteria in a tree. The user must
switch the criterion to ‘T'wo criteria’ in the upper part of the screen. Then,
‘Multiple criteria’ section appears in the left pane. In that section, the
user can change the names of the criteria and switch how they are ordered.
To be consistent with the usual approach used in HTA, we should switch
the name with the two-arrow button to make ‘Effect’ the first criterion.
The user can also switch the decision-making rule, selecting one of ‘min-
maz’ (when the cost is the first criterion and effect the second one), ‘maz-
min’ (with the order reversed), ‘min-min’ (e.g., when cost and pollution
are used as measured), or ‘maz-maz’ (when two wanted goods are used,
e.g., the throughput on highways and local roads) rules in the upper part
of the screen. Below we will use the ‘maz-min’ rule to match the natural
interpretation and order of criteria in HTA. The remaining cases are handled
analogously, taking the reciprocal of WTP or adding the two criteria to form
the NB, if needed.

We consider the following example. A patient with a given disease can
be treated with one of four available treatments, A-D. They differ for the
average (in a cohort of patients) cost ($) and effect (QALYs). The values are
presented in Table 4.1. We can also wait to see if the condition improves
without any treatment (probability 30%), which would provide 4 QALYs
at no cost. If the condition does not improve (probability 70%), then the
treatments A-D will cost slightly more and yield a smaller effect (also, see
Table 4.1).

We assume the decision-maker’s WTP=2, i.e., a gain of 1 QALY is
considered worthy of spending two monetary units more. We assume for
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Immediate use | Delayed use
Treatment | effect cost effect cost

A 2 2 1 3
B 3 3 2 5
C 4 ! 3 7
D 5) 8 4 11

Table 4.1: An example of two-criteria problem, a list of decision
alternatives A-F.

now (but will change this at the end of this subsection) that the decision-
maker is entirely precise in this assessment; hence, the lower and upper
bounds for WTP amount to 2. The problem is represented as a decision
tree in Figure 4.10. Immediately in the graph, we see that it is NB-optimal
to immediately use treatment B, yielding 3 QALYs for 3 monetary units
(hence, the net benefit is equivalent to 2 x 3 — 3 = 3 monetary units).
Assuming the decision-maker waits and the patient is still ill, it is optimal
to use delayed treatment A (as indicated by blue 1.00 along the edge).
If needed, this waiting and using A yields an average of 2.2 QALYs and
costs 2.1 monetary units. In principle, we want to find the NB-maximizing
strategy, but we also want to understand better the trade-offs between the
cost and effect.

In total, there are eight strategies: an immediate or delayed use of A,
B, C, or D. Each is characterized by the expected effect and cost (for im-
mediate use of A-D, these are simply given as A-D’s characteristics, for the
delayed use the expected values come from averaging with the consequences
of improvement without treatment). Just as in regular decision trees, the
number of policies can increase enormously if several decision nodes can
be reached along different paths, and the numbers of decisions in each are
multiplied.

4.2.2 Interpreting the league table

SD presents the results of the two-criteria analysis in a ‘league table’
see Figure 4.11, and the plot in the cost-effectiveness plane (CE-plane), see
Figure 4.13. In the league table, all the available strategies are enumerated.
They are briefly described with actions taken in initial decision nodes. They
are additionally enumerated to make it easier to refer to each strategy to
its representation in the CE-plane (description below). The strategies are
ordered concerning the expected effect, and the expected effect and cost are
presented (we omit the word ‘expected’ below for brevity).
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Figure 4.10: Choosing between multiple medical treatments using a

decision tree with two criteria.

Policy #
1

2

Policy Effect
‘treatment A 2 2
wait

treatment A 22 2.1
wait 29 35

treatment B ’ :
:treatment B & &
wait

treatment C 3.6 4.9
‘treatment C 4 5
wait

:treatment D 4.3 7
‘treatment D 5 8

Cost

Comment

incremental ratio=0

incremental ratio=0.5

dominated (by #4)

incremental ratio=1.125
extended-dominated (by #4 and #6)
incremental ratio=2
extended-dominated (by #6 and #8)

incremental ratio=3

Figure 4.11: League table for the problem of medical treatment selection
for the willingness-to-pay equal to 2.

A strategy X is dominated if there is another strategy Y such that
Y is not worse than X with respect to cost and effect and strictly better
considering cost or effect. Then X yields smaller NB for any WTP > 0.
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Dominated strategies are clearly labeled in the league table (e.g., strategy
#3 is dominated by strategy #4).

A strategy X is extended-dominated if there are two strategies, Y and
Z, such that X is dominated by some weighted average of Y and Z. The ra-
tionale behind such a definition is being that the decision-maker can create
a derived policy of randomizing between Y and Z (with probabilities pro-
portional to the weights in the average), and this resulting policy dominates
X in the standard sense (a more compelling rationale is presented below).
Extended dominance is clearly indicated in the league table; for example,
strategy #5 is extended-dominated by strategies #4 and #6, with weights
of 25% and 75%, respectively (the weights are not unique and are not shown
in the league table).

The remaining (not dominated and not extended-dominated) strategies
are considered in the effect-increasing order (also cost-increasing, since the
dominated strategies are removed from consideration). If two (or more)
strategies have identical expected effects and costs, they are given a single
number in the league table and are considered collectively. Moving from
one policy to the next results in an increase in cost and effect. We can then
calculate the ratio of the cost increase to the effect increase to calculate
the incremental cost-effectiveness ratio (ICER), measuring how much the
decision-maker needs to pay additionally for an extra unit of effect when
switching to a more effective policy. More formally, if we consider a switch
from policy ¢ to ¢ + 1, and denote the cost and effect of policy ¢ as C; and
FE;, respectively, then

Ciy1 — G

ICER; = =
i+1 vs ¢ Ei+1 — Ez

(4.7)

We often denote it by ICER;;1 for brevity, assuming it is calculated versus
the previous in the order (not dominated and not extended-dominated)
policy. In our example, ICERy = % = 0.5, means that if a decision-
maker decides to switch from policy #1 to policy #2, she will obtain an
additional effect for an average price of 0.5. If the decision-maker is willing
to pay this extra price, i.e., [CER < WTP, then the switch is recommended.
Notice that if FH=F < WTP, then also Ei 1 xWTP—Cyq > E;x WTP—
C;, hence NB of pohcy 1+ 1 is greater than of policy i: selecting the policy
based on ICER is equivalent to maximizing NB. If ICER = WTP, then
switching or not are equally recommended. If ICER > WTP, then not
switching is recommended.

If the extended-dominated policies have been removed, ICERs will come

in a non-decreasing sequence. Keeping the extended-dominated policies
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would violate this property. In our example, if policy #5 had not been
removed we, would get

C5—Cy  49-3
Es—E, 36-3
Co—Cs 5—49
Es—Es 4—36

If 3.1(6) < WTP and the switch to #5 is recommended, then also 0.25 <
WTP and a subsequent switch to #6 are recommended. Hence, an extended-
dominated strategy is never the optimal one (the NB maximizing one). This
property is another rationale for removing the extended strategies from con-
siderations in the league table: the ICERs are calculated versus the last
non-dominated (in any sense) strategy. In our example, ICER for strategy
#6 is calculated versus strategy #4:

ICER5 vs 4 =

= 3.1(6), (4.8)

ICERg vs 5 =

= (.25. (4.9)

5-3
4-3

In SilverDecisions, all the recommended strategies are highlighted in
the league table. In our example, strategies #4 and #6 both maximize the

NB for the assumed value of WTP = 2. To make this clear, we present the
NB of consecutive policies, NB;, (also the dominated ones):

ICERg s 4 = 2. (4.10)

NB; = 2.0 x 2 — 2.0 = 2.0,
NBy =22 x2—21=23,
NBj = 2.9 x 2 — 3.5 = 2.3,
NB, = 3.0 x 2 — 3.0 = 3.0,
NBj = 3.6 x 2 — 4.9 = 2.3,
NBg = 4.0 x 2 — 5.0 = 3.0,
NB; = 4.3 x 2 — 7.7 = 0.9,
NBg = 5.0 x 2 — 8.0 = 2.0.

Two strategies maximize the NB and are recommended: #4 and #6, which
confirm the conclusions of the ICER analysis (and these two have to agree,
as shown above algebraically).

Notice that some dominated (#3) or extended-dominated (#5) strate-
gies yield NB greater than some non-dominated strategies (e.g., #1). The
logic behind removing the (extended-)dominated strategies is that they are
not to maximize the NB for any value of WTP.

In our example, the WTP was defined as a single value, WTP=2. Still,
two strategies, #4 and #6 are highlighted because both maximize the NB.
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Typically, for a single-valued WTP, only a single strategy will be recom-
mended (the peculiarity of our example was since ICERg vs 4 was exactly
equal to WTP).

The decision-maker may not precisely define the acceptable trade-offs
between cost and effect. Then in the left pane of SilverDecisions, in the
‘Multiple criteria’ section, the user may provide a lower and upper bound
for WTP, differing from the default value, effectively defining a range of
WTP values. This imprecision does not change the result of dominance (or
extended-dominance) analysis. It may, however, be the case that depending
on the selection of a specific value of WTP from the range of different
strategies, maximize the NB. In the league table, all the strategies that
maximize the NB for at least one specific value of WTP from the range will
be highlighted, see Figure 4.12. For example, if we changed the lower /upper
bounds to 1.5 and 3, respectively, then additionally strategy #8 will be
highlighted. In the main pane in the tree, the strategy optimal for the
default value of WTP is marked.

Policy # Policy Effect Cost Comment

1 ‘treatment A 2 2 incremental ratio=0

2 wait treatment A 22 21 incremental ratio=0.5

3 wait woatments 29 35 dominated (by #4)

4 :treatment B 3 3 incremental ratio=1.125

5 wait 3.6 49  extended-dominated (by #4 and #6)
:treatment C

6 :treatment C 4 5 incremental ratio=2

7 wait 43 7.7  extended-dominated (by #6 and #8)

‘treatment D

8 ‘treatment D 5 8 incremental ratio=3

Figure 4.12: League table for the problem of medical treatment selection
for the non-degenerate willingness-to-pay range (1.5-3).
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Summing up this part, the league table presents the consequences of
all strategies available in a decision tree. It is shown which strategies can
never be recommended for any WTP (are dominated). For the remaining
strategies, the decision-maker is shown how the recommendation varies with
accepted trade-offs between cost and effect.

4.2.3 Interpreting the CE-plane

The results of the league table are additionally presented graphically in
the CE-plane, see Figure 4.13.

7
-

8.0 7 /. - Dominated

Extended-dominated

Recommended (for some

WTP in range)

Recommended (for

default WTP)

Other

Grey area highlights not
recommended region

Arrows indicate
improvement direction

Cost
o
)

20 25 3.0 35 4.0 4.5 5.0

Effect

Figure 4.13: Cost-effectiveness plane for the non-degenerate
willingness-to-pay range (1.5 3).

Typically, in HTA| the (expected) effect and cost define the abscissa and
the ordinate, respectively. Individual policies are shown as points. The grey
arrows indicate the direction of improvement along both dimensions. For
example, if a ‘maz-min’ rule is used, then moving in the southeast direction
(increasing the effectiveness and reducing the cost) is an improvement.

A strategy is dominated, if another strategy is located somewhere in
the southeast. All dominated strategies are marked in red. For example,
#3 is dominated by #4. A strategy is extended-dominated, if it lies to the
northwest of a part of a segment connecting the points representing two
other strategies. All extended-dominated strategies are marked in orange.
If a strategy maximizes the NB for at least one WTP from the range, it is
highlighted in green. Additionally, it is represented as light green if it max-
imizes the NB for the default WTP. All others (not dominated, extended-
dominated, or recommended) strategies are drawn in black. They could
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become optimal if the decision-maker changed her preferences, i.e., changed
her WTP.

The green points are connected with dashed segments, whose slope rep-
resents the ICER values. In our example, the segment connecting points
representing strategies #4 and #6 has a slope equal to 2. From the point
which corresponds to the cheapest of the recommended strategies (#4 in
our example), a dashed ray is drawn in the southwestern direction with a
slope equal to the lower bound of WTP. From the point representing the
most effective of the recommended strategies (#6 in our example), another
dashed ray is drawn in the northeaster direction with a slope equal to the
upper bound of WTP. The region to the northwest of the rays and line seg-
ments is marked in grey. If any strategy is added to the problem that would
fall inside (not on the border of) this region, the optimal decision will not
change. If any point is added on the border of this region, it will also be
recommended (for some value of WTP from the range). Still, the shape of
the whole region would not change (and so the currently highlighted strate-
gies would remain highlighted). If any point is added outside of this region,
it would become recommended, and the region’s shape will change (some
of the currently recommended strategies might cease being recommended).

Finally, a solid line is drawn through the light-green point (i.e., a point
representing the strategy optimal for the default value of WTP) with a slope
equal to the default WTP.

4.3 Discounting

In all the previous sections, the the tree’s structure only defined the
ordering of feasible actions and reactions (which events follow which). Still,
the actual time was separating the events. In particular, two edges did not
necessarily represent the same amount of time (for example, a path of two
edges might represent a shorter duration than some other single edge).

In real-life decision problems, the delayed pay-offs are often treated
as less important: an investor may prefer a pay-off of $1 million now,
to $1.1 million in 3 years. This time preference may result from uncer-
tainty (catastrophic risk), the possibility of investing the money (e.g., in
the bank account), or simple impatience. To introduce the time preference
in decision-making, the present value (PV) of future pay-offs is often calcu-
lated, i.e., the future pay-offs are discounted. The PVs are then averaged
with probabilities to calculate the expected PV of a policy, which is being
maximized.
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The present section shows how to use variables in order to introduce
discounting in SilverDecisions. In three subsections, we show how to
apply standard discounting, introduce hyperbolic discounting (more closely
related to how regular people discount the future but result in inconsis-
tent behavior), and discount pay-offs in two-criteria problems (and what
inconsistencies it may cause).

4.3.1 Standard (exponential) discounting

We use the following example. A company may invest its free cash in
developing and marketing new products in two ways: a conservative and
a risky way. A conservative choice costs $900,000 that must be spent im-
mediately. Most likely (probability 90%), this investment will be successful
and will yield $500,000 after one year. If it is successful in the first year,
it may continue being successful (probability 80%) and will yield an addi-
tional $700,000 after another year. Similarly, it may (probability 50%) yield
$400,000 after three years.

A risky alternative requires $400,000 immediately to cover the initial
research and development cost. There is a 10% risk that the whole project
will fail and have will to be cancelled; then, no revenue will be obtained.
Otherwise (it will be known after half a year), an additional $400,000 will
be needed. Then, with a probability of 50%, the project will yield $700,000
after the 1%, 2" and 3" year, each (or no revenue with a probability
of 50%).

The company is risk-neutral and discounts the future pay-offs with a dis-
count rate of 5% annually and a standard formula (explained below).

The structure of the tree is rather straightforward, and the complete
tree is presented in Figure 4.14 (focus on the structure and probabilities,
for now). The chance nodes have been labeled to make them easier to refer
to in the description (‘U1’, ‘U2’, ‘U8’ in the upper part, and ‘D1’, ..., ‘D4’
in the lower part). The tree can be downloaded from the book’s website
(discount. json).

The standard discounting assumes the present value (PV) of pay-off vy
obtained in time ¢, is given by v; x 8¢, where 0 < § < 1 is the discount factor.
Often § = ﬁ, where r > 0 is the discount rate (clearly, » = 0 results in no
discounting). For example, the annual (if ¢ is expressed in years) discount
rate of r = 0.05 denotes that $100 now is equivalent to $105 in one year
time (i.e., the decision-maker would be indifferent between the two), or that
$100 in one year is equivalent to ca. $95.24.

In SilverDecisions, discounting can be introduced using variables,
e.g. in the following way. In the global scope, we define the variables:
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failure -$900,000
u1 $0 0.10 010
conservative failure -$423,810
-$900,000 1.00 u2 $0 0.20 018
$1,010,107 \Success failure $211,111
$476,190 0.90 u3 $0 050 036

$646,151 \SUccess
$634,921 0.80

$172,768 success $556,646
failure -$400,000 $345,535 050 036
b1 0.10

$0 0.00

i failure -$790,360
-$400,000 0.00 D2 $0 050 0.00
$506,499 \contd
-$390,360 0.90 D3 D4
6953137 \success Q success Q success <] $1,115,914

[ ]

$110,107

$666,667 0.50 $634,921 1.00 $604,686 1.00 0.00
$1,239,607 $604,686

Figure 4.14: The impact of a discount rate on decision.

t =0
rate = 0.05
delta = 1/(1l+rate)

The two last variables are used only to make changing the discount
rate easier and to shorten the formulas. The first variable, t , is crucial
in handling the discounting; it is used to measure the passage of time to
know how strongly to discount the pay-offs obtained in individual nodes.
This variable is updated in every node to denote some time has passed. For
example, in ‘U1’ we have t=t+1 (one year has passed), and in ‘D1’ we
have t=t+0.5 (half a year has passed).

We then use t to define payoffs along the edges. For example, in ‘U1’
in the lower edge we have the payoff given by the formula 5%10°5xdelta”t
(i.e., 500,000 x §'). Then, the payoff is reduced by a factor &'

Defining t in the global scope, rather than in the root, makes it easier
to work with subproblems of the original problem (i.e., with subtrees copied
out of the initial tree). The formulas updating t will be kept in the subtree,
and the definition of ¢ = 0 in the global scope will remain. One will only need
to update the formulas in the root of the new tree (remove the formula for
t incremental updating). For example, we may cut the original tree in ‘D1’
to represent the situation after the risky alternative has been chosen and the
initial payment, $400,000, has been made (see Fig. 4.15). Notice that the
pay-offs along corresponding edges have increased by a factor (14 0.05)%,
which represents the removal of a half-year discounting.

Using the sensitivity analysis (SA) functionality of SilverDecisions
(see Section 3.3), we may inspect the impact of the discount rate on the
recommendation. We need to move the definition delta=1/(1l+rate) from
the global scope to the root and then run the SA for rate. For example,
in Figure 4.16 we present the results for rate between 0% and 10% with
a step of 1 percentage point. We can see that the conservative strategy is
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better for a patient decision-maker (low discount rate). Then, for a discount
rate of ca. 7%, the risky strategy becomes the recommended one.

failure $0
b1 $0 0.10 0.10
failure -$400,000
D2 $0 050 045

$519,007 \contd

-$400,000 0.90 D3 D4
$976,675 \SUccess success success $1,553,349
$683,130 0.50 $650,600 1.00 $619,619 1.00 0.45
$1,270,219 $619,619

Figure 4.15: A subtree of the original problem with discounting.

rate

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Totals
policy
R:conservative 198,000.00 | 179,378.74 161,299.95 | 143,741.94 126,684.11 110,106.90 | 93,991.68 78,320.76 | 63,077.27 | 48,245.17  33,809.17 | 112,423.25
R:risky 185,000.00 | 168,196.95 | 151,970.12 | 136,294.04 121,144.63 | 106,499.10 92,335.85 78,634.42 | 65,375.39 52,540.36 40,111.85  108,918.43

Totals 191,500.00 173,787.85 | 156,635.03 140,017.99  123,914.37 108,303.00  93,163.77 78,477.59  64,226.33 50,392.77 36,960.51 110,670.84

Figure 4.16: Inspecting the impact of the discount rate on the
recommendation.

4.3.2 Hyperbolic discounting and time inconsistency

Empirical observations suggest that the future pay-offs are often dis-
counted differently (rather than using the formula shown above). When
a pay-off is postponed, its PV first drops substantially but does not fall
strongly with further postponements. To put it differently, the relative im-
pact of the first postponement by one year (from the present moment till
one year time) is greater than from one year ahead to two years ahead. This
is sometimes represented as hyperbolic discounting: PV = vy x (1 4 rt)~!
(instead of PV = v; x (1 +r)7"), or quasi-hyperbolic discounting: PV =
v X /81(0#00)(’5)(1 +7)7t where 0 < 8 < 1.

To see how to use hyperbolic discounting in SilverDecisions, consider
the following example (not business-oriented, to stress that hyperbolic dis-
counting prevails in mundane situations). A person has just prepared a
bottle of a fine alcoholic beverage based on quinces (resembling tincture).
It should now be aged for several months to acquire this special taste: the
sooner consumed, the less utility the consumer will get. Assume the bottle
was prepared at the beginning of January, it can only be consumed at the
beginning of a month (say, when the person visits the family house where
the bottle is stored), and the utility pay-offs are given in Tab. 4.2. After
May, the aging no longer improves the taste.
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month: ‘ Jan Feb Mar Apr May
utility: | 247 10 14

Table 4.2: Pay-offs depend on the time of consumption.

We assume the person discounts the future with hyperbolic function and
r = 0.5 (we use this very high rate just for illustrative purposes, but in this
non-business situation, we may say it results from an extreme impatience).

The structure of the decision problem is quite straightforward (e.g. there
is no uncertainty) and is presented in Figure 4.17. In order to introduce
discounting, we use the same trick as in the previous subsection: we define
the variable rate=0.5 and t=0 in the global scope, update t=t+1 in
consecutive decision nodes, and use these variables when defining pay-offs.
To simplify things, we also define the vector variable u=[2,4,7,10,14] in
the global scope. As we may want to analyze subtrees of the original tree,
and the ul...] is defined using the absolute time (i.e., specific months)
and not the relative one (i.e., not the number of months since start), we
define it in the root additional variable [m=1] to be able to calculate the
absolute time in any specific node. With all those preparations, the payoff
associated with drinking in any decision node is given by the same formula:
ulm+t]/ (1+r*t) .

drink <] 2
Jan >
drink <] 2.67
Feb 2,67
467 wait drink <] 35
0 Mar 35
167 wait drink <] 4
0 Apr 4

467 wait
0 May

467 wait drink 4.67
0 g 467 "

4.67

Figure 4.17: When to have a drink — the structure of a decision problem
for a time-consistent person.

One can easily verify whether the tree has been set up correctly by
changing the global scope definition of rate to rate=0. Then the pay-
offs in individual months should be equal to those in Tab. 4.2.
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Even with the high discount rate, it is recommended for a decision-
maker to wait only until May and drink the bottle only then. Because the
taste does not improve after May and there is a discount, it makes no sense
to wait longer. And the possibility of waiting is not even included in the
tree’s structure. The reader may verify that adding more months will not
change the solution.

In the literature on hyperbolic discounting, various types of decision-
makers are considered [26]. A time-consistent decision-maker (TC-type)
chooses only once and follows this initial decision. TC-type would indeed
drink the bottle in May.

A naive decision-maker (N-type) re-evaluates the problem in every de-
cision node. One way to learn about N-type behavior in SilverDecisions
is to directly represent consecutive subproblems by copying subtrees of the
original tree, as shown in Figure 4.18. After copying and pasting, we need to
provide two definitions of variables in the roots of the subtrees; for example,
in the tree starting in February, we should have:

t=0
m=2

Redefining t guarantees that the future (relative to Feb) pay-offs are
correctly discounted. Redefining m is needed to read correct values from
the ul...] vector.

We can now see that the N-type will change her mind in April and drink
the bottle then. This results from the relatively small difference between
10 and 14 in absolute pay-offs and a steep decrease of a PV when a pay-
off is postponed from the present moment until the future. This changing
one’s mind (even though no new information was obtained) is dubbed time
inconsistency of decisions and is extensively studied in economics. As we
show, it can also be modeled with SilverDecisions.

Finally, the sophisticated decision-maker (S-type) can predict their in-
consistent behavior and try to optimize earlier decisions because of antici-
pated future actions. In our example, the S-type would predict in March
own drinking the bottle in April (even though it is optimal from the March
perspective to delay until May, see Figure 4.18).

We can solve the problem using S-type eyes by modifying the subtrees
proceeding from the last ones: we delete the parts we know will not be cho-
sen, see Figure 4.19. For example, in the March-starting tree, we remove the
possibility of waiting in April, as it will not be chosen. This removal leads to
the S-type wanting to drink the bottle in March. By learning new actions,
we modify earlier trees analogously. Eventually, the bottle will be emptied
in March. A complete tree can be found in the file alcoholMaster. json.
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467 wait

drink

.-<r drink < 467

4.67

467

Mar 467
56 wait drink
0

5.6 wait

0
wait drink < 5.6

drink

Mar 7

drink 6 67
6.67
7 wait
0
wait drink _ < 7

drink

May
wait drink 4 9.33

933

Figure 4.18: When to have a drink — an illustration for a naive
decision-maker.

4.3.3 Discounting in two-criteria problems

As presented in the previous section, SilverDecisions supports two-
criteria problems. It is not obvious whether both criteria should be dis-
counted at the same rate when facing such problems. In HTA, various
arguments are presented, see [17]. One way or another, individual criteria
can be discounted using the methods presented in the preceding subsections.
We use this opportunity to present that when both criteria are discounted
with different rates (but using exponential discounting) then — in specific
settings — a time inconsistency of decisions can occur, just as with hyper-
bolic discounting. We use the following example.

A medical program can be introduced that will immediately cost 103
monetary units and yield one effect unit (say one QALY). The unit of effect
is valued at 100 (obviously, the program is not recommended). Now assume
that the decision-maker can postpone the introduction (but it can only
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drink 4 2
Jan 2
drink 267
467 wait drink 4 35
0 Mar 35
467 wait drink 4
’ .-<: - ) 4

467 wait
0 May

4.67 wait drink 4.67
0 " 467 "
drink 4 467
Feb 4
drink 4.67
Mar /4.67 ’

467

467 wait

drink 7

7

Mar drink 6.67
Ar - [667

wait

6.67

drink 10
Apr 10

May

10 wait drink 9.33
0 933

9.33

Figure 4.19: When to have a drink — an illustration for a sophisticated
decision-maker.

be introduced once) by five years. The future is discounted (exponential
discounting) with annual rates of rc = 0.1 for cost and rg = 0.05 for effect.

The above problem is easily represented as in Figure 4.20: the decision-
maker can skip the program altogether, introduce it immediately, or wait.
In case of waiting, the program can eventually be introduced or skipped.
The discounting is done using variables t (denoting time and updated in
the tree), rE and rC (representing discounting rates). The variables are
used to define pay-offs in edges.

As seen in the tree, it is recommended to wait and introduce the program
later. This is confirmed by the league table (reproduced in Tab. 4.3). The
remaining options are enumerated explicitly in the league table.

What is interesting is that after waiting for five years the decision-maker
faces the problem of comparing two simple strategies: to skip it altogether or
introduce it now. It will be recommended to skip (gain of 1 effect valued at
100, at the cost of 103). Hence, the various discount rates can generate time
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do it

E: 1l
C: 103

wait

C:63.95

E: 0
C:0

Figure 4.20: When to introduce a given program a decision tree.

Policy # Policy Effect  Cost Comment

1 wait & skip OR skip 0 0

2 wait & do 0.784 63.95 ICER—81.62
3 do 1 103  ICER=180.37

Table 4.3: When to introduce a given program — a league table.

inconsistency. The reason for this phenomenon can be traced more easily
in CE-plane, see Figure 4.21. Point #1 represents (inter alia) not doing
anything (and therefore, it lies in the origin of the CE-plane), and point #3
is an immediate introduction. Delaying the introduction and discounting
the delayed consequences represent the delayed introduction towards the
origin. If both rates were equal, the point would approach the origin and
the segment joining #1 and #3. Then the ICER between #1 and #2 would
be equal to the ICER between #2 and #3, so introducing the program now
or waiting would be either recommended or not.

Because the cost is discounted stronger, the point for #2 lies below the
segment, and the switch from #1 to #2 results in a smaller ICER (still
<WTP) than the switch from #2 to #3 (here, >WTP).

The above phenomenon is a variant of the Keeler-Creting paradox and
sometimes is given as an argument not to use different discount rates in
two-criteria problems.
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Figure 4.21: When to introduce a given program — a cost-effectiveness

plane.
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In the previous chapters, we presented the SilverDecisions software
(Chapter 2) and discussed the theoretical background regarding the decision
trees (Chapter 3), and more advanced topics like multiple criteria or time-
discounting (Chapter 4). This chapter shows five decision cases that could
serve the reader as a set of exercises for the previously presented information
on the SilverDecisions. The purpose of this chapter is to discuss some
practical scenarios that will strengthen the reader’s understanding of the
decision trees and SilverDecisions.

This chapter is organized as follows. Section 5.1 presents and discusses
the case study related to the problem concerning the epidemic control strate-
gies selection; the two scenarios with the corresponding decision trees are
proposed. The cases are based on the current Covid-19 pandemic, using
simple and more complex decision-making setups. From Section 5.2 on-
wards, the presented examples are more straightforward applications that
are briefly discussed; the remaining models are constructed to give the
decision-making context with some prospectus extensions. The reader is
welcome to replicate proposed scenarios by themself and come up with a so-
lution.
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5.1 Social impact of epidemic control strategies

Preventing and containing contagious diseases not only in the absence
of vaccines or drugs, treatments require applying healthcare policies to mit-
igate the effects of the spread of new viruses or pathogens. These regulation
approaches are commonly referred to as Non-Pharmaceutical Interventions
(NPIs) [27]. The World Health Organization (WHO) distinguishes three
macro-categories of NPIs: i) personal protective measures (PPMs), like
using face masks and having regular hand hygiene, ii) environmental mea-
sures (EMs), such as surface and object cleaning, and iii) social distancing
measures (SDMs), like isolation, quarantine and lockdown measures. Even
though their application can help lower the number of infected individuals,
each NPI has different effects, resource implications, and ethical considera-
tions [27].

no S:-125,397
I: 46
S:-125,397 0.00 0.00

Use I: 46
tracing
technique?
100% of agents agree S: -147,663
1: 3
S:0 0.60
S:-143,049.5 I:0
1:15.5

60% of agents agree I3:3—2138,595
$:9068 030 0.30

1: 29

yes R
S:-147,663 1.00

I:3 S: 46135
I:12.5

20% of agents agree

S: -128,732
I: 41
S: 18,931 0.10 0.10

I: 38

Figure 5.1: Decision tree related to the first case study on whether to
invest in a tracing application.

Current development of the recent COVID-19 pandemic highlighted to
what extent the increase in human mobility and goods exchange made NPIs,
such as lockdown and border closure, more challenging to apply to past cases
in history, mainly because of their negative impact on the worldwide econ-
omy [11, 3] as well as on the psychological wellness of society [14, 34, 30, 36].
Specifically, each intervention impacts the daily routine of the population
both in a direct (for instance, if friends cannot meet in a restaurant) and
indirect way (for example, convincing people to wear face masks).
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Figure 5.2: PPMs and lockdown use case decision tree.

: 64
.00
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Choosing the correct control policy to adopt is a burden that govern-
ments bear as their decisions have repercussions also when the epidemic is
under control. Choosing the best intervention or combination of interven-
tions to apply remains challenging, considering the numerous and closely
tied aspects to examine. Further, each NPI intervention may eventually
translate into social damage and economic costs. However, estimating the
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impact of healthcare policies is not trivial. For instance, evaluating how
much a given intervention costs in dollars requires knowing production costs
(e.g., face masks or sanitization products manufactured), application costs
(e.g., closing a specific shop category, like cinema or restaurants), and hos-
pitalization costs (e.g., drug treatments or intensive care units).

This section presents two case studies, discussing two plausible scenarios
policymakers may have faced during the last pandemic. Each scenario re-
lates to a specific set of NPIs and analyzes which combination of the chosen
interventions apply. Each intervention is evaluated through an agent-based
simulation exploiting the model proposed by Antelmi et al. in [1, 2], con-
sidering the reduction in the percentage of infected Z and to what extent
its application damages the daily life of the population. To overcome the
modeling difficulties of considering the economic costs of an NPI interven-
tion, we will use the data-driven approach defined by the same authors.
Generally, NPIs and specifically SDMs have a primary objective of reduc-
ing contact among people. As a consequence, the impact on society of those
interventions translates, in practice, into the number of possible contacts
lost. To evaluate each intervention’s impact, we determined for each agent
the number of agents it was unable to meet because of the adopted NPIs.
We then defined the overall social impact of the intervention S as the sum of
the whole population. This definition of social impact represents a domain-
agnostic notion of cost and allows us to apply the same methodology to
different use cases. In both case studies, we will design a two-criteria de-
cision tree as our final goal is to minimize both percentage of infected and
the social impact. The mobility pattern used in the simulation is described
by the data set TownS-1k introduced by Kim et al. in [21].

5.1.1 Investing in a tracing application

Let us suppose that the government of Wonderland is facing a global
pandemic. Currently, 91% of the 1000 agents living in that place are in-
fected. The government decides to apply PPMs, isolation, and quarantine
measures. After a week, policymakers should decide whether to invest in
a tracing application that lets the agents know if and when they have been
in contact with other infected agents.

At this point, the policymakers of Wonderland can evaluate two scenar-
ios. First, they could decide not to invest in the tracing application. This
choice translates into having an overall social impact S equal to —125, 397
and still having the 46% infected Z after five months from the pandemic’s
beginning. In the second scenario, the policymakers can suggest investing
in the development of the application. However, the benefits of applying
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the tracing measure are related to the actual percentage of agents using the
application. Being a measure imposed by the government, all agents will
use the application with high probability. However, policymakers cannot
take this behavior for granted. For this reason, they could model with 0.6
probability of this scenario. In this case, the social impact S paid by the
population is —147,663, and the epidemic hits zero infected.

The tree models other two plausible scenarios, considering 60% and 20%
of the population adopting the application. These scenarios consider that
the majority of the agents or only a minor portion of the population agree
to adopt the tracing measures. Based on the same rationale, the proba-
bility that 60% and 20% of the agents use the application is 0.3 and 0.1,
respectively. As stated before, the decreasing probabilities model that poli-
cymakers expect a considerable number of agents to adopt the application.
When 60% of the agents use the tracing application, the final value of the
social impact S is —138,595, while having 32% of infected agents. In the
last case, the social impact S equals —128, 732, and the final percentage of
infected is 41%.

Figure 5.1 shows the decision tree. In this case, the best solution is
investing in the tracing application, regardless of the final number of actual
users.

5.1.2 The impact of lockdown policies

Let us suppose that the government of Wonderland wants to evaluate
whether applying only PPMs or lockdown measures, or a combination of
those to better face the pandemic.

The policymakers of Wonderland can evaluate different scenarios, which
are described and summarized in Table 5.1. For each scenario, the table
lists: (i) a brief description of the scenario, (i) which policy has been
applied and to what extent (in terms of the percentage of citizens using
PPMs and locations to close), (iiz) the final value of the social impact S,
and (7v) the final number of infected Z .

The values § and Z let policymakers evaluate different aspects as re-
ported in the decision tree graphically represented in Figure 5.2. As in
the previous decision tree, each decision node represents whether the gov-
ernment should apply a specific intervention and how strict the healthcare
policy should be. Each chance node models policymakers’ uncertainty about
how many people will agree to adopt the intervention. Hence, policymakers
can consider a scenario in which all agents adopt the measure and a sce-
nario in which only part of the population adopts it. The decision applied
as government regulation can hypothesize that all agents will respect the
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Table 5.1: PPMs and lockdown case study parameters and final values for
the social impact S and the percentage of infected 7.

Description NPIs applied S T
PPMs Lockdown

In these scenarios, everyone 100% 100% —222,430 0
uses PPMs, while the percent-  100% 70% —133,614 38
age

of locations to close 100% 60% —116,108 38
ranges from 100% to 40%. 100% 40% —48,388 61
In these scenarios, only 70% of  70% 100% —222,430 0
the agents use PPMs, while the — 70% 70% —133,614 38
percentage of locations to close  70% 60% —116,108 50
spans from 100% to 40%. 70% 40% —48,388 69
In these scenarios, no one uses 0% 100% —298,598 0
PPMs, while the percentage 0% 70% —188,714 51
of locations to close 0% 60% —184,984 64
ranges from 100% to 40%. 0% 40% —83,214 79
No intervention. 0% 0% 0 91

intervention with a higher probability. The overall social impact and the
final percentage of infected are based on this consideration. When not all
agents behave according to the measures, the final social impact evaluated
decreases with respect to the baseline as some agents still will be free to
move and meet other agents in the simulation. As a consequence, if, on
the one hand, policymakers may have back some of the estimated social
impacts, on the other hand, they will observe the final number of infected
increasing.

In this case, the best solution is to apply severe lockdown policies to
reduce to zero the percentage of infected, even though paying the highest

social impact.
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5.2 Banana trees

The second case study concerns a decision problem undertaken by a ba-
nana grower. The decision-maker in this scenario is a Brazilian farmer who
established a banana plantation. For many years, the grower followed one
proven strategy: exporting all of the crops. This strategy has been gener-
ating $ 10,000 in net profit. A year ago, to increase his income, the grower
decided to sell all the obtained crops to an external company that produces
banana nectars. Considering the obtained income and operating costs and
greater market recognition, the grower began to consider changing the com-
mercialization strategy for the results of his work.

This year, the farmer plans to maximize the profit obtained from his
crops by choosing the most convenient harvest time. The grower can take
one of several strategies. The first strategy assumes that the still unripe
fruit will be harvested and exported to European countries — during long sea
transport, the fruit will ripen. This is a safe decision option as all bananas
will be sold, and the farmer will not suffer any losses from spoiled fruits. If
this decision is chosen, the grower will get the lowest profit from the sale
($ 10,000, the baseline profit level in this case study).

The grower can also harvest moderately ripe fruit, but there is a 10%
chance that a quarter of the fruit will rot. The rest of the fruit will be ex-
ported to nearby countries for nectars. Since the company purchasing fruit
for nectars has problems with production this year, there is a 30% chance
that it will not buy any fruit from the farmer (if it does, the profit increases
by 20%, up to $ 12,000). There is also a 10% chance that a competing
company from a neighbouring country that purchases fruit will propose
a higher purchase price, but only for a large amount of fruit, i.e., if nothing
rots (in this case, the profit increases by 60%).

The grower is also considering buying a nectar-making machine — the
farmer could export produced nectar, obtaining a higher income than he
would get for selling the fruit to the factory (the profit increases by as much
as 80% compared to the baseline income $18,000).

The grower could also wait almost until the end of the season and des-
ignate the entire harvest for drying. Dried bananas are the most expensive
form a grower can sell (profit increases by 50% compared to the baseline
price), but there are two obstacles. Only four drying machines can be rented
in the area where the grower lives. There is a 40% chance that there will
be no rental machine left, and the grower will have to sell bananas for little
money to a nectar-producing company (the low price is caused by the fact
that very ripe bananas are only an optional nectar addition, profit drops
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by 50%, $5,000). The second problem is that there is a 20% chance that
a third of the fruit will be spoiled and not survive the harvest.

The description of the problem may seem confusing and not entirely
clear after reading it once. In reality, however, the number of possible eco-
nomic decisions is almost always extensive, and the variants of the outcomes
may often be very differentiated (as in the presented example both selling
fruit for export or renting fruit drying machines). However, this case study
aims to show the translation of practical decision-making problems into the
decision trees using the SilverDecisions. Below we present only a part of
the decision tree; see Figure 5.3.

Banana exports $10,000
$10,000 0.00 0.00

The company

will buy fruit $12,000
The fruit will $2,000 0.70 0.00

not rot
$10,000 0.90

The company will
not buy fruit,

Banana exports $10,000
0.00

The company
will buy fruit

$1,500 0.70

Selling fruit to a company
$0 0.00

$12,000

$15,000

1/4 of the
fruit will rot

$7,500 0.10

The company will
not buy fruit,

Banana exports $7,500
$0 030 0.00

$1,500

Waiting for
the fruit to
ripen more

‘You can rent

a machine

The fruit will $5,000 060
not rot ‘You can't rent
a machine.

$15,000
Fruit must be

sold cheaply
-$5,000 0.40

Drying of fruits

‘You can rent

You can't rent
a machine.

Waiting for
the fruit to
ripen more

fruit will rot

$6,000 0.20 Fruit must be

sold cheaply

$0 1.00

$15,000

The fruit has not been harvested

$15,000 a machine $9,000
1/3 of the $3,000 0.60 0.00

$0 0.00

Figure 5.3: Banana trees — unfinished decision tree

In this task, we ask the reader to analyze the description of the decision
task and complete the missing part of the tree. When refilling, it is worth
paying attention to how the path indicating the optimal solution changes,
i.e., the one that will bring the greatest profit. Additionally, we encourage
you to perform a sensitivity analysis before and after completing the tree on
the standard_ price parameter. We propose the following parameter values:
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min — 8,000, max — 12,000, step — 10,000.

With the decision tree indicated above, the best solution is to rent a ba-
nana drying machine. Note that for the full decision tree (filled with the
missing branches), the export nectar strategy will be the most profitable
option. Sample solution; see Figure 5.4.

Banana exports
$10,000 0.00

§10,000
0.00

will buy fruit

§12,000
0.00

The company

$2,000 060

The company will
not buy fruit,

Banana exports $10,000
50 030 0.00
The foreign compan
will buy fruit $16,000
$6,000 0.10 0.00
§9,000
0.00

The company will
not buy fruit,

Banana exports §7,500
%0 030 0.00

not rot export of nectar $18,000
Waiting for §10,000 0.90 §8,000 1.00 1.00
the fruit to

The fruit will

not rot
$10,000 0.90

Selling fruit to a company
50 0.00

$16,000

The company
will buy fruit

$18,000
$1,500 0.70

1/4 of the
fruit will rot

§7,500 0.10

The fruit will

ripen more Buying a machine N $8,000
50 1.00 50 1.00 dotthe
$18,000 $18,000 fruit will rot export of nectar §15,500
$7.500 0.10 58,000 1.00 0.00
58,000

You can rent
a machine

$5,000 0.60
You can't rent
a machine.

Fruit must be
sold cheaply

-$5,000 0.40

$15.000
0.00

The fruit will
not rot

$10,000 0.80

You can rent
a machine

$3,000 060
You can't rent
a machine.

Fruit must be
sold cheaply

$15,000

1/3 of the
fruit will rot

$6,000 020

50 0.00

$15,000

The fruit has not been harvested
50 0.00

Figure 5.4: Banana trees — full solution of the decision tree
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5.3 Machine rental

In the next case study, the company that produces decorated pencils
for sketching, which rents production machines from the beginning, will
be considered. Unfortunately, the company is struggling with considerable
financial problems, and if at the end of the month the company’s balance is
below $35,000, it will have to file for bankruptcy. Currently, the company
has a balance equal to $50,000, and the management board has to decide
whether to change the company’s current model. Currently, the company
rents machines, but the costs are not fixed (e.g., depending on exchange
rates): in the optimistic scenario (30% chance), the fee is equal to $8,000. In
the pessimistic scenario, it equals $12,000. Based on the costs, the solution
may be to buy a machine worth $22,000 (the price is already reduced by
the possible costs of integrating the new equipment into the production
line structure). Configuration of the device after purchase is a one-time
operation. Configuration correctness levels can be divided into three groups.
Correct configuration (40% chance) will bring $20,000 revenue. The average
configuration and the poor one will bring $15,000 and $5, 000, respectively,
equal probability.

Task: Enter the values given in the description on the initial tree dia-
gram. See Figure 5.5.

In this case, the decision tree will maximize the profits achieved — the
solution with the lowest level of loss will be chosen. See Figure 5.6.

5.4 Transport company

In this case study, we show an example of a transport company that
plans to introduce a new system for optimizing drivers’ routes. This decision
is due to the constant increases in fuel and car parts prices. The introduction
of the new system will ensure better routing of delivery vehicles, translating
into greater efficiency. The first implementation stage will be to change
the current environment in which all the company’s systems are placed: it
costs $50,000. If the company does not decide to introduce changes, it will
lose an average of $15,000 a month due to additional fuel and car repairs.
In addition, if the change in the technological environment is unsuccessful
(15% chance), the company will spend $10,000 restoring old copies of the
software.

Otherwise, it will be possible to implement a new optimization system
that costs $20,000. A properly functioning system will bring a profit of
$200,000 because the company will be able to provide more services at
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Figure 5.5: Machine rental — blank decision tree

correct configuration $48,000
$20.000 040 < 1.00
machine purchase N medium configuration $43,000
$28,000 1.00 $15,000 0.30 4 0.00
$20,000
Company poor configuration , < $33,000
$5,000 0.30 0.00
$48,000
optimistic cost R $42,000
-$8,000 0.30 4 0.00
no machine purchase_
$50,000 0.00
-$8,000 pessimistic cost 4 $38,000
-$12,000 0.70 0.00

Figure 5.6: Machine rental — full decision tree
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lower costs of their implementation. An incorrect operating system (20%
chance) will generate the previously mentioned $10, 000 costs to restore the
old environment.

Prepare an alternative solution in case of a malfunctioning system. Sug-
gest a branch that implements the system repair scenario. For a sample
solution, see Figure 5.8.

no change of development

environment -$15,000
-$15,000 0.00 0.00

return to the

old system < -$60,000
E 015
S05.800 $10,000 0.15

change of development
environment

-$50,000

retum to the
old system -§60,000
$115,800 -$10,000 0.00 0.00

new optimizatior
system implementgtion

1.00

Incorrectly working
optimization system
retum to the

old system

-$10,000 020

$138,000

-$80,000
017

new optimization
system

-$20,000 1.00

$158,000 Correctly working

optimization system

$130,000
$200,000 0.80 068

Figure 5.7: Transport company — unfinished decision tree

5.5 Sale of cosmetics

In the last case study, a facial care company has a chance to launch and
sell a luxury product or a popular product. For each decision option, the
probabilities of good, average and mediocre sales and the financial effects
of these outcomes were determined based on forecasts and statistical data
analyses.

For a luxury product, the probability of a good sale (with revenue of
$12,000) is 40%, of an average sale (with revenue of $65,000) 30%, and
of a mediocre sale (with revenue of $12,000) — 30%. Similarly, for a popular
product, the probability of good sales is 50% (revenue of $105,000), of
average sales — 40% (revenue of $55,000 ) and mediocre sales — 10% (revenue
of only $20, 000).
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Figure 5.8: Transport company — extended decision tree

$120,000

Average market outlet

Good market outlet $120,000
0.00

Luxury product
$0 0.00

§71.100

$75,500

$65,000

Bad market outlet
$12,000

0.30

Popular product
0 100

$75,500

$10,000

Figure 5.9: Sale of cosmetics — full decision tree

The goal is to build a tree and evaluate which decision options are more
profitable for the company. Then suggest other probabilities that make it
more beneficial to introduce a luxury products. For a sample solution, see

Figure 5.9.
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Concluding remarks

BoGcuMmit. KAMINSKI
MICHAL JAKUBCZYK
PRZEMYSLAW SZUFEL

In this book, we have presented the theory and applications of decision
trees as a tool that can be used for modeling sequential decision-making
problems. We have presented, in detail, how one can build decision trees
using the SilverDecisions software. In particular, we discussed advanced
topics of working with functions and variables, which are important when
a user builds a large decision tree and wants to perform its sensitivity anal-
ysis. Next, we have given rigorous mathematical foundations of the decision
tree model and presented all statistical concepts that the user needs to know
to perform and interpret sensitivity analysis of decision trees correctly. In
what follows, important practical topics of working with decision trees are
discussed: computation of value of information, solving multiple-criteria
problems, and various options how discounting can be taken into account
when working with decision trees. The book concludes with three example
case studies meant to show users how SilverDecisions can be used to
solve practical problems. The book contains two appendices that can serve
users as reference material when using SilverDecisions software.

The SilverDecisions software is available for free using a browser at
http://silverdecisions.pl/ website. In the past, the software has been used
to support decision-making in many application areas. Sequential decision-
making is naturally encountered in managerial problems involving, e.g., the
valuation of real options. Similarly, SilverDecisions users have report-
edly found it applicable in modeling complex legal cases or processes in
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engineering. The features related to modeling multiple-criteria decisions
are often used to model problems from medicine (especially for health tech-
nology assessment) and environmental economics. An interested user can
find additional example decision trees in the Gallery section of its documen-
tation (https://github.com/SilverDecisions/SilverDecisions/wiki/Gallery).

We hope that using this book; you will be able to analyze complex
sequential decision problems with uncertainty using the decision tree ap-
proach. We have described the software and mathematical foundations of
decision trees in detail as well and have provided several examples of prac-
tical applications.

SilverDecisions has been developed with the JavaScript language and
runs with the most modern web browser. This approach makes it possi-
ble to integrate SilverDecisions with other software (e.g., via embedding
or linking). In this book, we have also shown that some features of the
JavaScript interface are exposed to users of the software. This allows it
to extend the presentation/reporting possibilities of decision trees created
with this product.

Since SilverDecisions is developed as open-source software, interested
users can get involved in its development. You can find a guide on how to
get started in the developer’s section of the manual (https://github.com/
SilverDecisions/SilverDecisions/wiki/Developer’s-guide).
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Random distributions available
1in SilverDecisions
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Below you will find the complete list of random functions available for
use in SilverDecisions along with their parameters. The functions pre-
sented in this list can be used in variable definitions as well as directly for
pay-off and probability values. Please note that every time you press the
‘C Recompute’ button those functions return different values and your tree
is updated.

The random functions are also the foundation tool for probabilistic sen-
sitivity analysis  see Section 3.3.

e random() — returns an uniformly distributed random value in the range
[0,1).
This is a standard math.js function that can be also used in
SilverDecisions. This function takes no parameters.
® Uniform(a,b) — returns an uniformly distributed random value
— a — lower bound
— b upper bound, b >=a
® Exponential(beta) — returns an exponentially distributed random
value
— beta — shape parameter, 5 >0, A = 1/0.
For exponential distribution 3 is equal to the mean.
® Normal(mean,std) — returns a normally distributed random value
— mean — mean value
— std — standard deviation, ¢ >= 0
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® Pareto(alpha, minimum) — returns a Pareto distributed random value
— alpha shape parameter, a > 0
— minimum scale parameter, minimum > 0
e Loglogistic(alpha,beta) — returns a Log-logistic distributed
random value
— alpha shape parameter, a > 0
— beta scale parameter, 5 > 0
® VWeibull(alpha,beta) — returns a Weibull distributed random value
— alpha shape parameter, a > 0
— beta scale parameter, 5 > 0
e Erlang(k,beta) returns an Erlang distributed random value
— k shape parameter, k = 1,2.3,...
— beta scale parameter, § > 0 = 1/\. For Erlang distribution
5 is equal to the mean value.
e Triangular(a,b,m) — returns a Triangular distributed random value
— a left side
— b right side, b >=a
— m triangle peak (mode), a <=m <=1
® Trapezoidal(a,b,c,d) — returns a Trapezoidal distributed random
value
— a left side
— b right side, b >= a
— c left trapezoid peak (mode)
— d right trapezoid peak (mode), a <=c<=d<=b
® LogNormal (mean,std) — returns a Log-normally distributed random
value
— mean — mean value
— std — standard deviation, o0 >= 0
® Bernoulli(p) — returns a Bernoulli distributed random value
(Oor1)
— p success probability
® Binomial(n,p) — returns a Binomial distributed random value
(0,1,....,n)
— n number of trials
— p success probability in each trial
e Geometric(p) — returns any Geometric distributed random value
— p success probability
® Poisson(lambda) — returns a Poisson distributed random value
— lambda mean value
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® Gamma(alpha,beta) returns a Gamma distributed random value
— alpha shape parameter, o > 0
— beta rate parameter, 8 > 0






Appendix B

SilverDecisions quick user
reference

PRZEMYSLAW SZUFEL

In this section, we present a comprehensive list of basic SilverDecisions
functionalities. We start by presenting a list of mouse and keyboard short-
cuts supported by the application. Next, we present an overview of the
options that are displayed on the left side panel of the application. Finally,
we discuss the buttons available at the menu bar.

Mouse actions

‘& left-click node/edge selection

“w left-click context menu (adding/manipulating nodes)
& double-click context menu (adding/manipulating nodes)
Keyboard

Del delete selected nodes

Ctrl-C copy selected nodes

Ctrl-X cut selected nodes

Ctrl-v paste copied nodes as a subtree of a selected node
Ctrl-Z undo (revoke the last tree modification)

Ctrl-Y redo (revoke the undo operation)

Ctrl-Alt-D add new Decision subnode of a selected node
Ctrl-Alt-C add new Chance subnode of a selected node

Ctrl-Alt-T add new Terminal subnode of a selected node
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Ctrl-Alt-D inject new Decision node into a selected edge
Ctrl-Alt-C inject new Chance node into a selected edge

Note that when you click the "About" icon in the top right corner, you
can get the basic information on your SilverDecision application, including
a list of important keyboard shortcuts.

Actions in the left panel

Layout
Horizontal margin set margin from the left of the canvas
Vertical margin set margin from the top of the canvas
Node size set the node scaling
Edge slant (max) set the maximum slant for plotting the sloping
part of the edge
Width horizontal separation of tree node
(shown only for ‘TREE’ or ‘CLUSTER’ layout)
Height vertical separation of tree nodes
(shown only for ‘TREE’ or ‘CLUSTER’ layout)
Details
Title title of the diagram

the title can consist of several line
(you can use == Enter)
Description description for the diagram
it is displayed right under the title in a smaller
font size
the description can consist of several line
(you can use == Enter)

Decision Node

This action will be shown in the left panel when a decision node is
selected.

Label name of the decision node
(name can span multiple lines)
Connections labels and payoffs of specified edges

(shown only if the decision node has sub-nodes)
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Chance Node

This action will be shown in the left panel when a chance node is se-
lected.

Label type a name of the event
(span multiple lines by pressing enter)
Connections labels, payoffs and probabilities of specified edges

(shown only if the chance node has sub-nodes)

Terminal Node

This action will be shown in the left panel when a terminal node is
selected.

Label type the endpoint name
(span multiple lines by pressing enter)
Edge

This action will be shown in the left panel when an edge within a decision
tree is selected.

Label provide a decision name or an outcome label
(span multiple lines by pressing &= Enter)

Payoff type the value of the specified action/outcome

Probability type the probability of the specified outcome

(shown only for chance nodes)

Note that arithmetic expressions are allowed as probability and payoff
inputs. The # parameter is a defaulted input for probabilities. For more
information, please read the description below.

Floating text

This action will be shown in the left panel when a floating text is se-
lected.
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Text

Toolbar actions

New diagram

Open existing diagram
Save current diagram
PNG

SVG

PDF

MANUAL

TREE

CLUSTER

RULE

Undo
Redo
Settings
About

any text can be entered into this dialog.
Note that text can be made to span multiple
lines by pressing == Enter

clears canvas and starts an empty new diagram
loads existing diagram from disk

saves current diagram to disk in JSON format
saves current diagram in PNG format

saves current diagram in SVG format

saves current diagram in PDF format

allow manual positioning of tree nodes

default, automatic layout of tree nodes aligned
to the left

automatic layout of tree nodes aligned to the
right

decision-making criterion can be selected from
the following options:

max expected value maximization rule;
maxi-min — rule based on the worst-case
scenario, pessimistic approach:

in each chance node the lowest payofl is chosen;
maxi-max — rule based on the best possible
scenario, optimistic approach:

in each chance node the highest payoff is chosen;
min — expected value minimization rule;
mini-max — rule based on the worst-case
scenario for cost type of payoffs,

pessimistic approach:

in each chance node the highest payoff is chosen;
rule based on the best possible
scenario for cost type of payoffs,

optimistic approach:

in each chance node the lowest payoff is chosen.
undo last action

redo action

open diagram settings dialog box

open dialog box containing concise information
about SilverDecisions

mini-min
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SilverDecisions 1.2.0 (build 1640620092486)
A free and open source decision tree software.

Citation:
B. Kamiriski, M. P. Szufel: A itivity analysis of decision trees, Central Journal of O
doi:10.1007/s10100-017-0479-6

Project team:

« Bogumit Kamiriski (project manager)

« Przemystaw Szufel (deputy project manager)
« Michat Wasiluk (developer)

« Michat Jakubczyk (designer)

« Anna Szczurek (documentalist)

« Marcin Czupryna (tester)

The project is developed at Decision Support and Analysis Division, Warsaw School of Economics.
Contact: silverdecisions@sgh.waw.pl

SilverDecisions is a community-driven project, so if you use it for teaching, research or any other activity that you would be willing to share please let us
know. We would be glad to add a link to your activities on SilverDecisions Community page.

Software is developed as a part of ROUTE-TO-PA Project that has received funding from the European Union’s Honzon 2020 research and innovation
programme under grant agreement No 645860. Its aim is to allow a between public and citizens regarding
public data about decision making pi by public

All the source files are licensed under the terms of the GNU Lesser General Public License version 3.

For more information visit our website at http://silverdecisions.pl/.

Help

Mouse actions:

« left mouse button: node/edge selection
« right mouse button: context menu (adding/manipulating nodes)
« left mouse dbclick: context menu

Keyboard:

« Del: delete selected nodes

« Ctrl-C/X: copy/cut selected nodes

« Ctrl-V: paste copied nodes as a subtree of a selected node

« Ctrl-Y/Z: undo/redo

« Ctrl-Alt-D/C/T: add new Decision/Chance/Terminal subnode of a selected node
« Ctrl-Alt-D/C: inject new Decision/Chance node into a selected edge

Documentation of SilverDecisions is available here

Figure B.1: ‘About’ info contains basic information on keyboard shortcuts.
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